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1 Introduction

All graphs considered here are supposed to be finite, simple, and undirected. For
terminology not defined here, the reader is referred to [1, 2]. — Tutte proved
that every 3-connected graph nonisomorphic to K4 contains a contractible edge,
i.e. an edge xy such that identifying x, y in G−xy produces a 3-connected graph,
or, equivalently, such that G − {x, y} is 2-connected [9]. As a generalization,
McCuaig and Ota conjectured in [8]:

Conjecture 1 [8] For each ` ≥ 2 there exists a smallest number f(`) such that
every 3-connected graph G on at least f(`) vertices has a connected subgraph H
on ` vertices such that G− V (H) is 2-connected.

It is quite natural to ask for graph partitions with restrictions to size and con-
nectivity; a prominent result along these lines is Győri’s Theorem stating that
a graph G on n > k vertices is k-connected if and only if for every choice of k
distinct vertices a1, . . . , ak and any choice of k positive integers n1, . . . , nk such
that n1 + . . . + nk = n there exists a partition X1, . . . , Xk of its vertex set such
that for each i ∈ {1, . . . , k}, G(Xi) is a connected graph of order ni containing
ai [3].
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Conjecture 1 has been confirmed for ` ≤ 4, where the optimal values for f are
f(2) = 5 [9], f(3) = 9 [8], f(4) = 8 [6]. Although known to be true when H
is not forced to be connected [5], Conjecture 1 remains widely open in general.
For example, it is not known whether there is some k such that its restriction
to k-connected graphs is true.

The problem becomes much easier if we remove the edges instead of the ver-
tices of some subgraph H; clearly, we can not expect the respective statement
of Conjecture 1 without strengthening the connectivity condition to G. But
considering 4-connected graphs, a recent result on removable cycles [7] yields a
positive answer here:

Theorem 1 For every ` ≥ 1 there exists a number f(`) such that every 4-
connected graph G has a path or a star H on ` edges such that G − E(H) is
2-connected.

Proof. For ` ≥ 1 there exists an f(`) such that every connected graph on at
least f(`) vertices has either a vertex of degree ` + 2 or two vertices at distance
` (cf. [2, Chapter 1.3]). The main result of [7] implies that every edge of a
4-connected graph G′ is contained in some cycle C such that G′ − E(C) is 2-
connected (*), and we use it as follows. If G in contains a vertex of degree at
least `+2, we choose any star for H and observe that G−V (H) is 2-connected.
Otherwise, it must contain vertices a, b at distance `. By (*), there exists a cycle
C in G′ := G + ab containing a, b such that G′ − E(C) is 2-connected. Hence
P := C − ab is an a, b-path in G such that G − E(P ) is 2-connected, and any
subpath of length ` of P will serve for H. Q.E.D.

The core of this paper deals with the smallest open case ` = 5 of Conjecture 1
for regular graphs; it’s meant to support both McCuaig’s and Ota’s conjec-
ture and its difficulty when aiming for a sharp f(`), ` ≥ 5. For example, we
will determine the cubic 3-connected graphs G which do not have a connected
subgraph on 5 vertices such that G−V (H) is 2-connected; the two largest ones
have order 12, which shows f(5) ≥ 13.

The proof technique depends mostly on local arguments, and it is maybe inter-
esting to see how a “bookkeeping of the region in which the proof runs” pays
off in form of a more general result on graphs whose average degree is bounded
by 3 plus a small constant.

2 Extendability and Removable Links

We say that two subgraphs H1,H2 are within distance ` in G if there is an
V (H1), V (H2)-path of length at most ` in G, and we call disjoint subgraphs
H1,H2 adjacent if they are disjoint and within distance 1. This terminology is
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Figure 1: The Heawood graph.

extended to vertices, edges, and subsets of V (G) by considering the subgraphs
induced by the respective objects.

An induced subpath P of some graph G is called a link of G, if every vertex
of P has degree 2 in G, we call it a maximal link if there exists no link of G
containing P as a proper subgraph, and we call it removable if G − V (P ) is
2-connected. Hence every removable link is maximal. Furthermore, it is easy
to see that if G is not a cycle and the two neighbors of a maximal link L are
adjacent then L is removable.

An induced subgraph H of a 3-connected graph G is called contractible, if G−
V (H) is 2-connected, or, equivalently, if the graph G/V (H) obtained from G−
V (H) by adding a new vertex and making it adjacent all vertices in NG(V (H)) is
3-connected. Every subgraph of G of order 1 is thus contractible. Furthermore,
every connected subgraph H of G such that |NG(V (H))| = 3 is easily recognized
to be contractible: As the vertex h in V (G/V (H)) − V (G) has 3 neighbors in
G/V (H), it suffices to prove that for any two distinct vertices in V (G/V (H))−
{h} there exist 3 openly disjoint x, y-paths; but such paths exist as there are 3
openly disjoint x, y-paths in G and at most one of them can intersect V (H).

Throughout this paper, contractible subgraphs of order 3, 4, 5 are also called
contractible triples, quadruples, quintuples, respectively. An edge xy is said to
be contractible in G if G({x, y}) is contractible.

We call a contractible subgraph H of G extendible if there exists a vertex x ∈
V (G) − V (H) such that G(V (H) ∪ {x}) is contractible. Clearly, such a vertex
x must be in NG(V (H)), and we sometimes say that H has been extended by
x to G(V (H) ∪ {x}). An edge is called extendible if it is contained in some
contractible triple.

Let’s have a look at some example. The Heawood graph is the point line
incidence graph of a projective plane of order 2, as depicted in Figure 1. It is the
unique cubic bipartite graph on 14 vertices without 4-cycles. Observe that every
connected subgraph on 1, 2, 3, or 4 vertices is contractible. Every contractible
quadruple is extendible, but not in an arbitrary way, since a connected subgraph
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on 5 vertices is contractible if and only if it does not induce a path.

Nonextendability of H is closely related to the presence of removable links in
G− V (H), as it is indicated by the following theorem from [6].

Theorem 2 [6] Let H be a contractible subgraph of a 3-connected graph G. If
H is not extendible then either G− V (H) is an induced cycle or G− V (H) has
a pair of disjoint nonadjacent removable links each of which has order at least
2.

For example, the subgraph induced by a single vertex x of degree 3 in a 3-
connected graph G is contractible and extendible unless G − x is a triangle,
so unless G ∼= K4. Similarly, a triangle ∆ in G such EG(∆) consists of 3
independent edges must be extendible unless G − ∆ is a triangle, so unless
G ∼= K2 ×K3. The following two lemmas elaborate the idea that small degrees
in small contractible subgraphs cause nice extendability properties.

Lemma 1 Let G be a 3-connected graph on at least 9 vertices and let wx be
a contractible edge in G such that dG(w) = dG(x) = 3. Then there exists a
contractible edge yz with y ∈ {w, x} such that dG(y) = dG(z) = 3 and yz is
contained in some contractible triple.

Proof. We may assume that wx is not extendible, for otherwise it would serve
as an appropriate yz. Observe that |EG({w, x})| = 4. Since |V (G)| ≥ 7,
G − {w, x} does not induce a 4-cycle, and, by Theorem 2, G − {w, x} admits
a pair P = pq, S = st of nonadjacent removable links of order 2, where each
of p, q, s, t has degree 3 in G. If w was adjacent to p, q then stx would be a
contractible triangle, proving the statement with yz = xs or yz = xt. Hence we
may assume that w and, symmetrically, x, has neighbors in both P,Q.

Without loss of generality, let pw, qx, sw, tx ∈ E(G). Since G is 3-connected
and |V (G)| ≥ 9, |NG({p, q, s, t, w, x})| > 2. So we may assume, without loss
of generality, that the vertex a in NG(p) − {q, w} is not in NG(s) ∪ NG(t).
Note that pw is contractible, since G − {p, q, w, x} is 2-connected and q, x are
adjacent to each other and to distinct vertices of the latter subgraph. If it was
not extendible then G − {p, w} had two disjoint nonadjacent removable links
by Theorem 2. As q, x are on the same maximal link of G − {p, w}, a, s must
form a removable link of G− {p, w} — but they are not even adjacent. Hence
yz = pw is extendible, proving the lemma. Q.E.D.

Lemma 2 Let G be a 3-connected graph on at least 9 vertices and let H be a
contractible triple in G such that all vertices in H have degree 3 in G. Then H
is extendible or H is contained in a contractible quintuple of G.

Proof. Suppose that H is not extendible. Since |V (G)| ≥ 9, |EG(V (G) −
V (H))| ≥ 4 by Theorem 2. Hence H induces a path xyz in G, and |EG(V (H))| =
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Figure 2: The graphs R6, M5, and OCC.

5. Since |V (G)| ≥ 9, G − V (H) can’t induce a cycle. Hence, by Theorem 2,
G − V (H) contains two removable links P, S links of order at least 2. One
of these, say, P , must have order equal to two, and so G(V (H) ∪ V (P )) is a
contractible quintuple. Q.E.D.

3 Contractible Quintuples

Let R` := C` × K2 be the ribbon of length ` ≥ 3. Let M` denote the graph
obtained from C2` by adding an edge between any two vertices at distance `,
which one could call the Möbius strip of length `. To clip a vertex x of degree
3 in a graph G means to subdivide the three edges incident with x once, adding
the three edges in between the subdivision vertices, and then removing x. The
oppositely clipped cube OCC is obtained from a cube R4 by clipping two vertices
at distance 3. The graphs R6, M5, and OCC are depicted in Figure 2 and play
a prominent role in this section as exceptional graphs. Each of them is cubic
and 3-connected, and there is no contractible quintuple in either of them.

Theorem 3 Let G be a 3-connected graph on at least 10 vertices nonisomorphic
to the ribbon R6 of length 6, the Möbius strip M5 of length 5, and the oppositely
clipped cube OCC.

Suppose that h is a vertex such that all vertices within distance 6 from h have
degree 3.

Then there exists a contractible quintuple within distance 3 from h.

Proof. Assume, to the contrary, that there is no contractible quintuple within
distance 3 from h.

The “local regularity condition” to h will ensure throughout the proof that all
vertices under consideration have degree 3, and in most cases this will not be
discussed explicitely. In particular, if these graphs are small, say, of order at
most 14, then they must be cubic, and in this case, moreover, every subgraph
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Figure 3: Almost an oppositely clipped cube.

is within distance 3 from every vertex (so we have not to take the location of h
into account in these cases).

Claim 1. There is no triangle within distance 3 from h.

Assume that G has a triangle ∆ within distance 3 from h. Then all vertices
in ∆ have degree 3 in G, and, as we have seen before, ∆ is extendible to a
contractible quadruple H, which is within distance 3 from h. Let w be the
vertex in V (H) − V (∆), let x be its neighbor in V (∆), and let y, z be the two
vertices in V (∆)− {x}.

By assumption, H is not extendible, so |NG(V (H))| ≥ 4, and, since EG(V (H))
contains exactly 4 edges and |V (G)| ≥ 9, these edges connect V (H) to a pair
of two removable links P = pq, S = st of order 2 in G − V (H) by Theorem 2.
If the two neighbors of w distinct from x were both in P then (G − V (S)) −
(V (H)−{w})) would be 2-connected, so G({s, t, x, y, z}) would be a contractible
quintuple within distance 3 from h, contradiction. By symmetry, we thus may
assume that EG(V (H)) = {wp,ws, yq, zt}.

Since (G − V (P )) − V (H) is 2-connected, G − {x, y, z, q} is 2-connected, too,
so H ′ := G({x, y, z, q}) (and H ′′ = G({x, y, z, t})) is a contractible quadruple
within distance 3 from h. Since it is not extendible, we deduce, as above for H,
that EG(V (H ′)) consists of the four edges qp, xw, zt, qr, where we let r be the
neighbor of q in V (G) − V (H) − V (P ). As NG(V (H ′)) consists of the vertex
sets of two removable links of order 2 in G− V (H ′), rt ∈ E(G) follows, so r is
the neighbor of t in V (G)− V (H)− V (S).

Let C := G(p, q, r, t, s, w, x, y, z). This situation is depicted in Figure 3. We see
that the vertices at distance 1 and those of distance 2 from ∆ form a bipartition
of the induced 6-cycle pqrtsw.

By local regularity and 3-connectedness, there exist unique neighbors a, b, c of
p, s, r, respectively, in V (G)− V (C), which all have degree 3. If a = b = c then
|V (G)| = 10 and G({w, x, p, s, a}) is a contractible quintuple, as removing it
produces a 5-cycle qrtzy.
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Otherwise, C is contractible as we have observed before, and a, b, c are pairwise
distinct. If they are pairwise adjacent then G is the oppositely clipped cube
OCC. Otherwise, C is extendible by Theorem 2. By symmetry, we may assume
that C is extendible by c.

Consider the path Q := crqy. Since G − (V (C) ∪ {c}) is 2-connected and
apwxztsb is an a, b-path in G−V (Q) that covers all vertices in V (C)−V (Q), Q is
contractible. Observe that Q is within distance 3 from h (as h ∈ V (C)∪{a, b, c}).
Therefore, it is not extendible by assumption. Since x, z, t are contained in one
and the same maximal link of G − V (Q), there must be a removable link L in
G − V (Q) containing at least two of NG(V (Q)) − {x, z, t} by Theorem 2; the
latter set consists of p and the two vertices d, e in NG(c)− {r}.

If L avoids p then it is equal to de, so cde is a triangle and G− (V (Q) ∪ {d, e})
is 2-connected. It follows that G− ((V (Q)− {y}) ∪ {d, e}) is 2-connected, too,
so G({c, d, e, q, r}) is a contractible quintuple within distance 3 from h in G,
contradiction.

Hence L does not avoid p. So L must contain a, too, implying that L is ad-
jacent to c. The same argument applied to the path P = crtz yields that b is
adjacent to c. But then {a, b} separates V (C) ∪ {c} from the remaining graph,
a contradiction.

This proves Claim 1.

Claim 2. If H is a contractible 4-cycle within distance 3 from h then its four
neighbors form two disjoint nonadjacent removable links of order 2 in G−V (H).

As H is not extendible and |V (G)| ≥ 10, Claim 2 follows immediately from
Theorem 2.

Claim 3. G contains no contractible subgraph K1,3 within distance 1 from h.

Suppose that H ∼= K1,3 is a contractible subgraph within distance 1 from h, let
w denote the unique vertex of degree 3 in H, and let x, y, z be the others; H is
not extendible by assumption.

If G − V (H) is a 6-cycle C then the two neighbors of at least one of x, y, z on
V (C) have distance 3 in C, as they can’t be adjacent by Claim 1. (In fact, G
must be one of the two graphs in Figure 4, one of them being the Petersen
graph.) Suppose x has neighbors a, d at distance 3 in C and take a path abcd
in C. Then abcdx is a cycle, and H := G− V (abcdx) is connected and, thus, a
contractible subgraph on 5 vertices.

If, otherwise, G − V (H) is not a 6-cycle then it contains two removable links
P, S of order at least 2 by Theorem 2. If P had order 2 then it had two
distinct neighbors in H (as G contains no triangle within distance 3 from h
by Claim 1); without loss of generality, let these be x, y. Since z has two
neighbors in V (G) − V (H) − V (P ), G − (V (P ) ∪ {w, x, y}) is 2-connected,
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so G(V (P ) ∪ {w, x, y}) is a contractible quintuple within distance 2 from h,
contradicting our assumption.

Hence we may assume that P , and, symmetrically, S has order at least 3. As
every vertex of P, S has a neighbor in V (H), we deduce that |V (P )| = |V (S)| =
3, say, P = pqr, S = stu.

If the three edges in EG(V (P ), V (H)) are independent, say px, qy, rz then pxwyq
is a contractible 5-cycle within distance 2 from h, contradiction. Since, by Claim
1, there is no triangle within distance 3 from h, we therefore may assume that
p, r are connected to the same vertex, say, x, from H, and, symmetrically, that
s, u are connected to, say, y. It follows that zq, zt ∈ E(G). C := pqrx is a
contractible 4-cycle within distance 3 from h; by Claim 2, G − V (C) has two
removable links of order 2; hence wz is one of them and the two neighbors of
V (P ) in G−V (H) constitute the other one. In particular, the neighbors of V (P )
in G − V (H) are adjacent. Hence P is a removable link in G − V (H) − V (S),
implying that G − V (H) − V (P ) − V (S) is 2-connected! From this one easily
deduces that G−rqztu is 2-connected, so rqztu is a contractible quintuple within
distance 3 from h.

This proves Claim 3.

Claim 4. If H is a contractible path P4 within distance 2 from h then the four
neighbors of its endvertices form two disjoint nonadjacent removable links of
order 2 in G− V (H) none of which is contained in a triangle.

Suppose H = wxyz is a contractible path within distance 2 from h. By assump-
tion, it is not extendible. Note that all vertices in NG(V (H))∪V (H) are within
distance 6 from h and, thus, have degree 3. If G− V (H) was a 6-cycle C then
the neighbors a, b of w on C are at distance 2 in C, for otherwise, by Claim
1, either a, b-path in C would have length 3 and would form, together with w,
a nonseparating 5-cycle D; thus G − V (D) would be a contractible quintuple,
contradiction. Consider the neighbor c of y in V (C). It can’t be a neighbor of a
or b in C, for otherwise awxyc or bwxyc would be a nonseparating 5-cycle in G,
contradiction again. So c is the unique vertex such that a, b, c are independent
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Figure 6: a, c and d, e do cross: M5 arises.

in C. Symmetrically, the two neighbors d, e of z and the neighbor f of x in
V (C) are independent in C (and distinct from a, b, c). If d, e are in the same
component of C − {a, b} (see Figure 5) then G({a, b, f, w, x}) is a contractible
quintuple, contradiction. Otherwise, one of d, e is adjacent to both a, b and the
other one is adjacent to exactly one of a, b. By symmetry, let d be adjacent
to a, b and let e be adjacent to b only (see Figure 6), so C = adbecf and G is
isomorphic to the exceptional graph M5, contradiction.

Hence we may assume that G−V (C) is not a 6-cycle. By Theorem 2, G−V (H)
has two disjoint nonadjacent removable links P, S with 2 ≤ |V (P )| ≤ V (S) and
|V (P )|+ |V (S)| ≤ |NG(V (H))| = 6.

If |V (P )| = |V (S)| = 3, say, P = pqr and S = stu, then EG(V (H)) consists
of 6 edges in EG(V (P ) ∪ V (S)), and h is contained in V (H) ∪ V (P ) ∪ V (S) ∪
NG(V (P )) ∪ NG(V (S)). One of the four endvertices of P,Q must be adjacent
to an endvertex of H; by symmetry, let pw ∈ E(G).

Assume for a while that wq ∈ E(G). Then h ∈ V (S) ∪ NG−V (H)(V (S)) by
Claim 1. If rx ∈ E(G) then G({s, t, u, y, z}) would be a contractible quintuple
within distance 1 from h. If ry ∈ E(G) then sz, uz ∈ E(G) (for otherwise z and
its two neighbors in V (S) would form a triangle within distance 2 from h, con-
tradicting Claim 1), impyling that G({p, q, w, x, t}) is a contractible quintuple
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within distance 2 from h. If rz ∈ E(G) then G({p, q, r, w, z}) is a contractible
quintuple within distance 3 from h. In either case, we found a contradiction, so
wq 6∈ E(G).

If wr 6∈ E(G) then G({q, r, x, y, z}) would be a contractible quintuple within
distance 3 from h. So wr ∈ E(G). Furthermore, z must be adjacent to s or
u, for otherwise zq, zt ∈ E(G), so x, y and stu would induce a 5-cycle, and
G({p, q, r, w, z}) would be a contractible quintuple within distance 3 from G.
We may assume sz ∈ E(G), and, uz ∈ E(G) follows the same way we deduced
wr ∈ E(G) from wp ∈ E(G) before.

If qx, ty ∈ E(G) then G({p, q, r, w, x}) or G({s, t, u, y, z}) would be a con-
tractible quintuple within distance 3 from h, which is absurd. Hence qy, tx ∈
E(G), implying that pqrw and stuz are contractible 4-cycles, one of which is
within distance 3 from h. By symmetry, we may assume that pqrw is within
distance 3 from h. By Claim 2, the two neighbors of V (P ) in G − V (H) are
adjacent. It follows that G′ := G − (V (H) ∪ V (P ) ∪ V (S)) can’t be separated
by less than 2 vertices. As one of the paths pwxts, rwxts has distinct neighbors
in V (G′), one of rqyzu, pqyzu is a contractible quintuple within distance 2 from
h in G.

Hence we may assume that |V (P )| = 2, say, P = pq. Note that w must be
adjacent to one of p, q (for otherwise G({p, q, x, y, z}) would be a contractible
quintuple within distance 3 from h), and so must z. We may assume wp, zq ∈
E(Q) without loss of generality. In particular, pq is not contained in a triangle.
Indeed, for proving Claim 4 it it suffices to prove that |V (S)| = 2, as the same
arguments holds for s, t if S = st.

If |V (S)| = 4, say, S = stuv, then again EG(H) would consist of 6 edges
of in EG(V (P ) ∪ V (S)), and h ∈ NG(V (H)) ∪ V (H). First, w can’t be ad-
jacent to t or u (for otherwise G({u, v, x, y, z}) or G({s, t, x, y, z}) would be
a contractible quintuple within distance 2 from h), so w is adjacent to one
of s, v, and so is z. Without loss of generality, ws, zv ∈ E(G). If xu, yt ∈
E(G) then G({p, q, w, x, u}) is a contractible quintuple within distance 3 from
h in G, which is absurd. Hence xt, yu ∈ E(G), implying that stxw, uvzy
are contractible 4-cycles within distance 3 from h in G. By Claim 2, p and
the vertex in NG(s) − {t, w} must be adjacent. So the neighbor a of p in
X := V (G) − (V (H) ∪ V (P ) ∪ V (S)) equals the neighbor of s in X, and,
symmetrically, the neighbor b of q in X equals the neighbor of v in X. So
NG(V (P ) ∪ V (S) ∪ V (H)) = {a, b}; since G is 3-connected, G must be the
graph R6

∼= K2 × C6.

If |V (S)| = 3, say, S = stu, then w can’t be adjacent to s or u for otherwise
G({t, u, x, y, z}) or G({s, t, x, y, z}) would be a contractible quintuple within
distance 3 from h in G. Without loss of generality, suppose sx, uy ∈ E(G), so
tw ∈ E(G) or tz ∈ E(G). But then G({p, q, t, w, z}) is a contractible quintuple
within distance 2 from h.
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Figure 7: The return of the Heawood graph.

This proves Claim 4.

In the proof of the following Claim, the Heawood graph will show up.

Claim 5. G contains no contractible path path P4 within distance 1 from h.

Suppose H := wxyz is a contractible path within distance 1 from h. By Claim
4, G − V (H) has two removable links P = pq, S = st where each of p, q, s, t
is adjacent to w or z, and neither pq nor st are on a triangle. By symmetry,
we may assume wp,ws, zq, zt ∈ E(G). Let a, b, c, d, e, f be the neighbors of
p, q, s, t, x, y, respectively, in V (G)− (V (H)∪V (P )∪V (S)). Note that a, b, e, f
are pairwise distinct, and so are c, d, e, f . Since pwxy is a contractible path
within distance 2 from h, af ∈ E(G) by Claim 4. Symmetrically, since swxy,
xyzq, xyzt are contractible paths within distance 2 from h, cf, be, de ∈ E(G)
by Claim 4, see Figure 7.

Since H ′ = wpqz is a contractible path within distance 2 from H, we may play
the same game with H ′, P ′ := xy, and Q′ := Q. (The roles of pq and xy
are swapped.) Now qpws, tzqp are contractible subgraphs within distance 2 (!)
from H, implying that bc, ad ∈ E(G). But this determines the neighborhoods of
a, b, c, d, e, f , as each of them is within distance 2 from V (H) and, thus, within
distance 6 from h. As a, b, c, d have degree 3, it follows easily that they are
pairwise distinct. So G must be the Heawood graph, and we can extend H by
e or f to obtain a contractible quintuple within distance 1 from h, contradicting
our assumption.

This proves Claim 5.

Claim 6. G has a contractible quadruple within distance 1 from h.

Since h has degree 3, it is contained in some contractible edge hh′ (by Theorem
2, as we have observed before). Since dG(h′) = 3, there is a contractible triple
H within distance 1 from h by Lemma 1. Each vertex in H is within distance 3
from x and, thus, has degree 3. If H would not be extendible, then there existed
a contractible quintuple within distance 1 from h by Lemma 2, contradicting
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our assumption. Hence H is extendible, proving Claim 6.

By Claims 6,1,3,5, there exists a contractible 4-cycle H = wxyz within distance
1 from H, where we take w within distance 1 from h.

By Claim 2, there exists a pair of nonadjacent removable links P = pq and S = st
of order 2 in G−V (H). Without loss of generality, either pw, sx, ty, qz ∈ E(G),
or pw, sx, qy, tz ∈ E(G). In either case, the path pwx is contractible. By Lemma
2, it must be extendible. Since w is the only common neighbor if p, x in G, pwx
can’t be extended to a 4-cycle, which violates Claim 1,3, and 5. Q.E.D.

As an immediate corollary we obtain that McCuaig’s and Ota’s Conjecture
is true for ` = 5 when restricted to cubic graphs. Furthermore, every cubic
graph on 8 vertices distinct from the cube must contain a triangle ∆, and as ∆
is 2-connected and contractible, G− V (∆) is connected and, thus, contractible.
As K4,K3,3, and K2 ×K3 are the only cubic graphs on less than eight vertices,
we obtain

Corollary 1 A cubic 3-connected graph has a contractible quintuple if and only
if it is nonisomorphic to K4, K3,3, K2 ×K3, R4, M5, R6, or OCC.

4 Relaxing Regularity

The statement of Corollary 1 can be extended to 3-connected graphs of small
average degree by employing the following lemma.

Lemma 3 For δ, b ∈ N there exists a constant C > 0 such that every graph of
minimum degree δ in which all vertices are within distance at most b from the
set of those vertices of degree exceeding δ has an average degree of at least δ+C.

Proof. (According to an idea of R. Diestel.)

Let G be a graph with δ(G) = δ, and suppose that every vertex is within
distance b from W := {x ∈ V (G) : dG(x) > δ}. Let F := {(x, e) : e ∈
EG(x)} denote the flags of G, and note that, for x ∈ W , the set B(x, e) of
vertices within distance b from x in (G − (W − {x})) + e contains at most
m := 1+1+(δ−1)+(δ−1)2 + . . .+(δ−1)b−1 = 1+((δ−1)b−1)/((δ−1)−1)
vertices. For each x ∈ W , fix a set F (x) of δ + 1 many flags (x, e).

Put a charge of 0 to every vertex and a charge of 1 to every flag, and discharge
each flag f = (x, e) as follows: If dG(x) = δ then transfer a charge of 1 from f
to x; otherwise, if f ∈ F (x) then transfer a charge of 1 − 1/(δ + 1) from f to
x and a charge of C := (1/(δ + 1))/m from f to every vertex in B(f), and if
f 6∈ F (x) then transfer a charge of 1/m from f to every vertex in B(f). After
discharging, every flag has charge 0 and every vertex has charge at least δ + C.
The total charge remains 2|E(G)|, which proves the statement. Q.E.D.
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For δ = 3 and b = 6 we obtain, for example, m = 33 and C = 1/132 in the
proof. It follows that in every graph of minimum degree 3 and average degree
less than 3 + 1/132, we find a vertex h such that every vertex within distance
6 from h has degree 3. Combining this with Theorem 3, we thus obtain the
following.

Corollary 2 Every 3-connected graph on at least 13 vertices and of average
degree less than 3 + 1/132 has a contractible quintuple.

∗

In [8] it has been proved that every graph on at least 2` + 2 vertices contains a
contractible subgraph whose order is at least ` and at most 2`− 1; this can be
improved easily for regular graphs, using Lemma 3:

Theorem 4 For δ, ` ∈ N there exists a constant C > 0 such that every 3-
connected graph of minimum degree δ and average degree less than δ + C on
at least 2` + 1 vertices has a contractible subgraph on at least ` and at most
3(`− 1)/2 vertices.

Proof. We take C as in Lemma 3 with δ ≥ 3 and b := `. Let G be a 3-connected
graph of minimum degree δ and average degree less than δ + C. It contains a
vertex h such that all vertices within distance ` from h have degree δ.

We prove the stronger statement that for each m ≤ `, there exists a contractible
subgraph H containing h with m ≤ |V (H)| ≤ max{m, 3(m − 1)/2} (∗m). (∗1)
is immediate, take H := G({h}). Now suppose that, for 2 ≤ m ≤ `, H is a
contractible subgraph of G containing h such that m− 1 ≤ |V (H)| ≤ max{m−
1, 3(m − 2)/2}. If |V (H)| ≥ m then this proves (∗m), hence we may assume
that |V (H)| = m− 1.

As H is connected, |E(G)| ≥ m − 2, and as all vertices in H have degree δ,
|EG(V (H))| ≤ δ · (m− 1)− 2 · (m− 2) = (δ − 2)(m− 1) + 2. Let X be the set
of vertices of degree 2 in G − V (H). As all vertices in NG(V (H)) have degree
δ, too, |EG(X, V (H))| = |X| · (δ − 2). Since |EG(V (H))| ≥ |EG(X, V (H))|,
|X| ≤ (m− 1) + 2/(δ − 2) ≤ m + 1 follows.

Since |V (G)| ≥ 2` + 1 ≥ 2m + 1, G − V (H) can’t induce a cycle. If H is
extendible then (∗m) is proved, and thus, by Theorem 2, G − V (H) contains
two disjoint nonadjacent removable links whose orders sum up to at most m+1.
Hence G − V (H) has a removable link P on at most (m + 1)/2 vertices, and
G(V (H) ∪ V (P )) is a contractible subgraph on at least m + 1 and at most
(3m− 1)/2 vertices, proving (∗m). Q.E.D.
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Corollary 3 Every regular 3-connected graph on at least 2`+1 vertices contains
a contractible subgraph on at least ` and at most 3(`− 1)/2 vertices.

Proof. If G is regular of degree δ then take C as in Theorem 4 and observe
that G satisfies the conditions of the statement in Theorem 4. Q.E.D.
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