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MacLane’s theorem for higher surfaces

Henning Bruhn∗ and Reinhard Diestel

Abstract

We generalise MacLane’s planarity criterion to surfaces of higher genus.

1 Introduction

MacLane’s well-known planarity criterion characterises the finite planar graphs
in terms of their cycle space. As the cycle space C(G) of a graph G we take
the Z2-vector space generated by the edge sets of cycles in G, with symmetric
difference as addition. Its elements are those sets F ⊆ E(G) such that every
vertex of G is incident with an even number of edges in F . Call a family F of
sets F ⊆ E(G) sparse if every edge of G lies in at most two members of F .

MacLane’s planarity criterion can then be stated as follows:

Theorem 1 (MacLane [7]). A finite graph is planar if and only if its cycle
space is generated by some sparse family of (edge sets of) cycles.

The aim of this paper is to generalise MacLane’s theorem to arbitrary closed
surfaces.

Our approach is motivated by simplicial homology, as follows. Let a graph G
be embedded in a closed surface S of minimal Euler genus ε := 2−χ(S). Then S
can be viewed as the underlying space of a 2-dimensional CW-complex C with
1-skeleton G. Its first homology group Z1(C; Z2)/B1(C; Z2) is Zε

2, the direct
product of ε copies of Z2.

In graph theoretic language this means that the subspace B (= B1(C; Z2))
spanned in C(G) (= Z1(C; Z2)) by the set of face boundaries of G in S has
codimension ε in C(G). Now the set of face boundaries is a sparse set of cycles.
Thus, if G embeds in a surface of small Euler genus, at most ε, then G has a
sparse set of cycles spanning a large subspace in C(G), one of codimension at
most ε.

MacLane’s theorem says that, for ε = 0, the converse implication holds too:
if G has a sparse set of cycles whose span in C(G) has codimension at most
ε = 0, then G embeds in the (unique) surface of Euler genus at most ε = 0, the
sphere. Our initial aim, then, would be to prove this converse implication for
arbitrary ε.

This naive extension soon runs into difficulties, and indeed is not true. In
Section 3 we discuss the obstructions encountered as they arise, and modify
our naive conjecture accordingly. The result will be a collection of theorems,
presented in Section 4, which each characterise embeddability in a surface of
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given Euler genus by a condition akin to MacLane’s planarity criterion that is
both necessary and sufficient. All proofs are given in Section 5.

Some previous work in this direction can be found in the literature. Mohar [8]
also starts out from the above-mentioned necessary condition for embeddability
in a surface of Euler genus at most ε, that the graph must have a sparse set of
cycles whose span in its cycle space has codimension at most ε. Unlike our plan
here, Mohar does not strengthen this condition to one that is also sufficient,
but establishes how much it implies as it is; the (best possible) result is that
it implies embeddability in a surface of Euler genus at most 2ε. Edmonds [5]
also studies embeddability in higher surfaces, in terms of duality. Our results
will imply Edmonds’, but we defer this to a separate paper on extensions of
Whitney’s theorem to higher surfaces [3].

2 General definitions and background

All graphs we consider are finite. Our notation will be that of [4], except that
instead of ‘multigraph’ we say ‘graph’. (Thus, our graphs may have loops and
multiple edges, and degrees and connectivity are defined as they are in [4] for
multigraphs. In particular, 2-connected graphs cannot have loops.) In the
statements of some of our results we do not allow loops, but only to avoid
unnecessary complication in our terminlogy: those theorems can be applied to
graphs with loops by subdividing (and thereby eliminating) these.

The set of edges of a graph G = (V, E) incident with a given vertex v is
denoted by E(v). When W is a walk in G, we denote the subgraph of G that
consists of the edges on W and their incident vertices by G[W ]; note that this
need not be an induced subgraph of G. Both the edge space of G and its
subspace, the cycle space C(G), are taken over Z2. We write their elements as
subsets of E, so vector addition becomes symmetric difference of edge sets. If
G is connected and has n vertices and m edges, its cycle space has dimension

dim C(G) = m − n + 1. (1)

A (closed) surface is a compact connected 2-manifold without boundary.
An n-dimensional CW-complex, or n-complex, is a finite set C of open balls

Bi
j ⊆ Ri with i ≤ n, called i-cells, that have disjoint closures and whose union

is made into a topological space |C| as follows. The union C0 of all 0-cells
(which are singletons, so C0 is just a set of points) carries the discrete topology.
Assume now that the union of all i-cells with i ≤ k < n, the k-skeleton Ck of C,
has been given a topology, and denote this space by |Ck|. For every (k + 1)-
cell Bk+1

j ∈ C choose a continuous attachment map fj : ∂Bk+1
j → |Ck| from

its boundary ∂Bk+1
j in Rk+1 to |Ck|. Then give |Ck+1| the quotient topology

of the (disjoint) union of |Ck| with all the closures of the Bk+1
j obtained by

identifying every x ∈ ∂Bk+1
j with fj(x).

Every graph G is a 1-complex, with vertices as 0-cells and edges as 1-cells.
A topological embedding of G in another space S is a 2-cell-embedding if G is
the 1-skeleton of a 2-complex C such that the embedding of G in S extends to
a homeomorphism ϕ : |C| → S. The images under ϕ of the 2-cells of C are the
faces of G in S. If S is a surface, their attachment maps define closed walks
in G. These walks are unique up to cyclic shifts and orientation, a difference
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we shall ignore. We thus have one such walk assigned to each face, and call
this family the (unique) family of facial walks. If W is the facial walk of some
face f , then ϕ maps the subgraph G[W ] onto the frontier of f in S, and we call
G[W ] the boundary of the face f .

Given a surface S, consider any 2-cell-embedding of any graph in S. Let n
be its number of vertices, m its number of edges, and � its number of faces in S.
Euler’s theorem tells us that n − m + � is equal to a constant χ(S) depending
only on S (not on the graph), the Euler characteristic of S. The Euler genus
ε(S) of S is defined as the number 2 − χ(S). Euler’s theorem then takes the
following form, which we refer to as Euler’s formula:

ε(S) = m − n − � + 2. (2)

Given a graph G, let ε = ε(G) be minimal such that G has a topological
embedding ϕ in a surface of Euler genus at most ε. This ε is the Euler genus
of G, and any such ϕ is a genus-embedding of G. Genus-embeddings of connected
graphs are 2-cell-embeddings [9, p. 95]. If G has components G1, . . . , Gn, then
ε(G) = ε(G1)+ · · ·+ ε(Gn), a fact referred to as genus additivity [9]. (The same
is true for blocks rather than components, but we do not need this.)

We say that a family W of walks covers G if every edge of G lies on some
walk of W. It covers an edge e k times if k =

∑
W∈W kW (e), where kW (e) is

the number of occurrences of e on W (irrespective of the direction in which W
traverses e). W is a double cover of G if it covers every edge of G twice. A walk
is non-trivial if it contains an edge.

Given a walk W in G, we write c(W ) for the set of edges that appear an
odd number of times in W . Note that, if W is closed, then c(W ) lies in C(G),
the cycle space of G. The dimension of a family W of closed walks, dimW, is
the dimension of the subspace spanned in C(G) by the sets c(W ) with W ∈ W.
The codimension of W in C(G) is the number dim C(G) − dimW.

3 Reconstructing a surface

MacLane’s theorem offers a necessary and sufficient condition for embeddability
in a fixed surface, the sphere. Ideally, we would like to have a similar condition
characterising embeddability in an arbitrary but fixed surface S.

To illustrate what we mean by ‘similar’, let us think of MacLane’s theorem
as listing some properties of the facial cycles of a plane graph—sparseness and
generating the entire cycle space—which, together, are strong enough to im-
ply the following: that whenever we have any collection of cycles with these
properties and attach a 2-cell to each of them, the 2-complex obtained is home-
omorphic to the sphere. (This, indeed, is the outline of the standard topological
proof of MacLane’s theorem.)

For an arbitrary surface S, we are thus looking for a similar list of properties
shared by the facial cycles of all graphs suitably embedded in S (with a genus-
embedding, say) that allows us to reconstruct S by attaching a 2-cell along each
of those cycles. One of those properties should be sparseness: if more than two
2-cells meet in an edge, the complex obtained will not be a surface. Following
the homological approach outlined in the introduction, we might complement
this by requiring that our cycles span a large enough subspace of the cycle space:
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Naive Conjecture. A graph G embeds in a surface S if and only if G has a
sparse set of cycles whose span in C(G) has codimension at most ε(S) in C(G).

Notice that this conjecture can be true only if embeddability in a surface S
depends only on ε(S). For ε = 0 this is not an issue, since the sphere is the
only surface with ε = 0. For even ε > 0, however, there are two surfaces of
Euler genus ε—one orientable and one non-orientable—and the corresponding
classes of graphs embeddable in them do not coincide. (Indeed, large projective-
planar grids have unbounded orientable genus [2], while K7 can be embedded
in the torus but not in the Klein bottle [6].) Our best hope, therefore, is to
characterise embeddability not in a given surface S, but in ‘some’ surface of
given Euler genus.

Another flaw in the Naive Conjecture which the reader will have noticed is its
reference to cycles: for higher surfaces, even genus-embeddings of 2-connected
graphs can have facial walks that are not cycles. (For example, we can embed
the graph G of Figure 1 in the torus by running the edge e = uv along a
handle added to the sphere to join two triangular faces containing u and v,
respectively. Then e lies on the boundary of only one face, whose facial walk
contains it twice and therefore is not a cycle. Zha [12] constructed for every
surface S other than the sphere and the projective plane a 2-connected graph
that has a genus-embedding in S but no embedding whose facial walks are all
cycles.)

With these two modifications, our conjecture might become the following:

Revised Conjecture. For every integer ε ≥ 0, a graph G embeds in a surface
of Euler genus at most ε if and only if it has a family of closed walks that covers
every edge at most twice and whose codimension in C(G) is at most ε.

However, as noticed already by Mohar [8], this is still not true. In fact, our
list of properties of facial cycles—so far: sparseness and large dimension—needs
two more additions.

For the first of these, consider the plane graph A1 shown in solid lines in
Figure 1. Let G be obtained from A1 by adding the edge uv. This graph G is
one of the 35 forbidden minors that characterise embeddability in the projective
plane (Archdeacon [1]); in particular, ε(G) ≥ 2.

v

u

Figure 1: Add the edge uv to obtain a graph G with ε(G) ≥ 2

Let W denote the family of facial walks of A1. The subspace it spans in
C(G) is the cycle space of A1. By (1), and since G has one more edge than A1
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but the same number of vertices, we deduce that

dimW = dim C(A1) = dim C(G) − 1.

By the Revised Conjecture for ε = 1, this implies that G can be embedded in
the projective plane—which it cannot.

To rule out counterexamples such as this, we shall add to our list of require-
ments on the closed walks in the Revised Conjecture that they cover every edge
of G—not only at most twice, but also at least once. Since the facial walks in
any 2-cell-embedding of a graph have this property, it is certainly an acceptable
addition to our list. (In MacLane’s theorem no such requirement is needed,
because it follows: when G is 2-connected—as we may assume—and the given
family of cycles generates all of C(G), it automatically covers all the edges.)

For our second additional requirement, consider the plane graph A2 shown
in Figure 2. Let G be obtained from A2 by identifying the vertices u and v.
This graph G is another of Archdeacon’s 35 forbidden minors for the projective
plane, so again ε(G) ≥ 2.

u

v

Figure 2: Identify u and v to obtain a graph G with ε(G) ≥ 2

As before, the subspace W spanned in C(G) by the facial walks of A2 is the
cycle space of A2. By (1), and since G has one vertex less than A2 but the same
number of edges, we deduce that

dimW = dim C(A2) = dim C(G) − 1.

The Revised Conjecture for ε = 1, even if amended by the requirement that W
cover all the edges of G (which it does), thus implies that G can be embedded in
the projective plane—which it cannot. But how can we distill from this example
a property of the facial cycles of graphs in surfaces that W fails to have? This
question puzzled us for a while, until it occured to us to do the obvious thing:
to form the 2-complex corresponding to W and see why it is not the projective
plane. The answer, of course, is that this complex is not a surface at all: it is
the pseudo-surface obtained from a sphere by identifying two points.

To rule out this type of counterexample we must therefore require that, for
every vertex v, no proper subset of those of our given walks that pass through v
can combine to a flat neighbourhood of v when we attach 2-cells to these walks.
To do this correctly will be a little technical, and we address this task in the
next section. Once this is done, we can state and prove our results.
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4 Statement and discussion of results

Let W = v1e1 . . . vnenv1 be a closed walk in a loopless graph G, where the vi

are vertices and the ei are edges. For a vertex v we call a subsequence ej−1vjej

of W with vj = v (where e0 := en) a pass of W through the vertex v. Extending
our earlier notation for walks, we write c(ej−1vjej) := {ej−1, ej} if ej−1 �= ej ,
and c(ej−1vjej) := ∅ if ej−1 = ej .

In order keep track of how often a given walk passes through a given ver-
tex, we shall consider the family of all passes of W through v, the family
(ej−1vjej)j∈J where J = {j : vj = v, 1 ≤ j ≤ n}. Similarly, if W = (Wi)i∈I

is a family of walks then the family of all passes of W through v is the family
A(W, v) := (pij)i∈I,j∈Ji

where, for each i, (pij)j∈Ji
is the family of all passes of

Wi through v.
Recall that a family F of subsets of E(G) is sparse if every edge of G lies

in at most two members of F . Similarly, we shall call our family W of walks
sparse at an edge e ∈ G if it covers e at most twice. In view of our discussion
in Section 3, we now wish to define a sparseness requirement also at vertices.
Let us call W sparse at a vertex v ∈ G if every non-empty family F ⊆ A(W, v)
for which

∑
p∈F c(p) = ∅ satisfies F = A(W, v).1 If W is sparse at all vertices

and edges of G, we call it a sparse family of walks. (For edge sets rather than
families of walks we retain our earlier notion of sparseness, meaning sparseness
at edges. When this is the intended meaning we shall specifically say that we
are speaking about edge sets.)

We can now state our first extension of MacLane’s theorem:

Corollary 2. For every integer ε ≥ 0, a loopless graph G can be embedded in
some surface of Euler genus at most ε if and only if there is a sparse family of
closed walks covering G whose codimension in C(G) is at most ε.

For ε = 0, Corollary 2 reduces to MacLane’s theorem. This is not imme-
diately obvious: one has to show that a sparse family B of edge sets of cycles
generating C(G) (as in MacLane’s theorem) must be sparse also at vertices when
these cycles are interpreted as walks. But this is easy. Indeed, suppose that the
edges at v in a non-empty subfamily F = (C1, . . . , Ck) of B sum to zero, but
there exists another cycle C ∈ B \ F that contains an edge at v. Pick edges
uv ∈ C1 and vw ∈ C. If we assume that G is 2-connected (as we may, for a proof
of MacLane’s theorem), then G− v contains a u–w path P , and C ′ = uPwvu is
a cycle in G. We claim that no set B′ ⊆ B can sum to C ′. For since B is sparse
and F sums to zero at v, every edge e ∈

⋃
F at v lies on exactly two Ci but not

on any cycle in B \F ; in particular, e �= vw. Hence in order for
∑

B′ to contain
the edge uv ∈ C ′, the family B′ has to meet F in a proper non-empty subfamily
F ′ ⊂ F . But then

∑
F ′ contains another edge e �= uv at v, which lies neither

on C ′ nor on any cycle in B′ \ F ′. Hence e lies in
∑

B′ but not in C ′, giving∑
B′ �= C ′ as claimed.

Our approach to proving the backward implication of Corollary 2 will be
that outlined in Section 3: to each walk in the given sparse family we attach

1In plain English: no proper non-empty subfamily of all the passes of W through v can
sum to zero. In our graph G obtained from the graph A2 of Figure 2 by identifying u and v,
the family of (six) passes of facial walks of A2 through the identified vertex has two such
subfamilies: one consisting of the three passes of facial walks of A2 through u, the other
consisting of the three passes of facial walks of A2 through v.
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a disc, and prove that the resulting space is a surface. The following theorem
spells out this approach explicitly: its backward direction is stronger than that
of Corollary 2 in that it allows us to make our given walks into face boundaries.

Theorem 3. Let G = (V, E) be a loopless connected graph, W a family of closed
walks in G covering G, and ε ≥ 0 an integer. Then the following two statements
are equivalent:

(i) There is a surface S of Euler genus at most ε in which G can be 2-cell-
embedded so that W is a subfamily of the family of facial walks.

(ii) There is a sparse family of closed walks in G that has codimension at
most ε in C(G) and includes W.

Given our discussion at the end of Section 3, it may come as a surprise that
in the harder implication (ii)→(i) of Theorem 3 we can weaken the premise (ii)
considerably while retaining (i) in only slightly weaker form. By our definition
of sparseness at vertices, condition (ii) of Theorem 3 requires that no proper
subset of all the passes of W through a vertex v may sum to zero. Since each
walk W ∈ W can contribute several such passes, the condition becomes much
less stringent if we ask the same only for sums of passes that include, for every
W ∈ W, either all the passes of W through v or none. All the same, this
weaker condition implies almost the same as statement (i) of Theorem 3: we
shall still be able to embed G in a surface of Euler genus at most ε so that all the
subgraphs G[W ] with W ∈ W become face boundaries. In fact, the embedding
will differ from that required by (i) of Theorem 3 only in that the walks W ∈ W,
when we turn them into facial walks, may have the order changed in which their
edges are traversed: the set of these edges, as well as their mulitiplicity on W
(1 or 2), will remain the same.

How is this possible? Consider a double cover W of G that is not sparse
at vertices. Then a CW-complex constructed by attaching a 2-cell to every
walk in W will not be a surface: it will be a pseudo-surface, with a pinchpoint
at every vertex where W was not sparse. Our claim, therefore, is that by
merely traversing the edges of our walks W in a different order we can ‘de-
pinch’ this pseudo-surface, turning it into a proper surface, while keeping its
face boundaries both as subgraphs and in terms of edge multiplicities. This is
not unremarkable, in view of the fact that such ‘de-pinching’ was not possible
for our second projective-planar example in Section 3.

To make all this precise, let W be a family of walks in a graph G = (V, E).
For a vertex v denote by W(v) the subfamily of walks containing v. We
call W weakly sparse at v if every non-empty subfamily U of W(v) for which∑

U∈U c(U) ∩ E(v) = ∅ satisfies U = W(v). A family of walks that is sparse
at edges as well as weakly sparse at all vertices will be called weakly sparse.
If G is loopless, then any sparse family of closed walks in G is also weakly
sparse, since for every vertex v and every closed walk W we have c(W )∩E(v) =∑

p∈A((W ),v) c(p).
Finally, call a family W ′ = (W ′ : W ∈ W ) of closed walks similar to W if,

for every e ∈ E(G) and every W ∈ W, the edge e occurs on W ′ as often as it
does on W . Thus if W ′ is similar to W then G[W ′] = G[W ] and c(W ′) = c(W )
for every W ∈ W, and dimW ′ = dimW. In particular, if W is weakly sparse
then so is W ′—an implication that can fail for ‘sparse’.
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Theorem 4. Let G be a connected graph, W a family of closed walks in G
covering G, and ε ≥ 0 an integer. Then the following statements are equivalent:

(i) There is a surface of Euler genus at most ε in which G can be 2-cell-
embedded so that the family of facial walks has a subfamily similar to W.

(ii) There is a weakly sparse family of closed walks in G that has codimension
at most ε in C(G) and includes W.

The graph in Theorem 4 may contain loops: we excluded these in Theorem 3
only because they would have complicated the definition of passes through a
vertex, which is implicit in the definition of ‘sparse’ but not of ‘weakly sparse’.

Theorem 4 can be used to strengthen Corollary 2:

Corollary 5. For every integer ε ≥ 0, a graph G can be embedded in some
surface of Euler genus at most ε if and only if there is a weakly sparse family
of closed walks covering G whose codimension in C(G) is at most ε.

For the projective plane it is possible to rephrase our results in terms of cycles
rather than arbitrary closed walks, as in MacLane’s theorem for the plane. To do
so we need the following lemma, which was proved independently by Negami [10]
and by Robertson and Vitray [11].

Lemma 6. In any embedding of a 2-connected non-planar graph in the projec-
tive plane, all face boundaries are cycles.

Together with Corollaries 2 and 5 this yields:

Corollary 7. A 2-connected graph is projective-planar if and only if it contains
a sparse (equivalently: weakly sparse) family of cycles that covers it and has
codimension at most 1 in its cycle space. �

5 The proofs

Let W be a family of closed walks in a loopless graph G that is sparse at edges.
Recall that, for each vertex v ∈ G, we denoted by A(W, v) the family of all
passes of W through v. As a tool for our proofs, let us define for every vertex v
an auxiliary graph H = H(W, v) with vertex set of A(W, v). Its edge set will
be a subset of E(G), with incidences defined as follows. Whenever two distinct
vertices p, q of H (i.e., passes that are distinct as family members—they may
be equal as triples) share an edge e ∈ G, we let e be an edge of H joining p
and q. If W contains a pass p = eve, we let e be a loop at p. Clearly, H has
maximum degree at most 2, since a pass evf can be incident only with the
edges e and f . (For example, if there are three edges e, f, g at v in G, and W
contains the passes evf, fvg, gve, then these three passes and the three edges
e, f, g form a triangle in H. As another example, if W has two passes consisting
of the triple evf , or one pass evf and another pass fve, then these two passes
are joined by the pair {e, f} of double edges in H and have no other incident
edge.)

Note that W fails to be sparse at the vertex v if and only if H = H(W, v)
contains a cycle C with a vertex set U � V (H), because

∑
p∈U c(p) = 0 if and

only if H[U ] is 2-regular. Thus, W is sparse at v if and only if H(W, v) is either
empty or a single cycle or a forest. If W is a double cover of G, then every
H(W, v) is 2-regular.
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We begin with the proof of Theorem 3. For the easier implication, (i)→(ii),
we need that the family W of facial walks of a graph G in a surface S is as
close to being linarly independent as any family of edge sets summing to zero
can be: that dimW = |W|− 1. We shall prove this more generally for arbitrary
sparse families of closed walks (indeed of edge sets2), which may be of some
independent interest.

Lemma 8. Let G = (V, E) be a connected graph, and let W be a weakly sparse
family of non-trivial walks in G covering every edge twice. Then dimW =
|W| − 1.

Proof. Since W covers every edge twice we have
∑

W∈W c(W ) = ∅, so dimW <
|W|. To prove that dimW ≥ |W|−1 we show that, in fact, for every non-empty
proper subfamily U of W the family ( c(U) : U ∈ U ) is linearly independent in
the edge space of G over Z2. Suppose not, i.e., suppose that

∑
U∈U c(U) = ∅

for some such U .
Pick a walk W ∈ W \ U . By assumption the walks in W are non-trivial, so

W contains an edge. This edge cannot lie on any walk in U : as
∑

U∈U c(U) = ∅,
this would mean that U would cover it at least twice, but by assumption all
of W covers it only twice. On the other hand, since U is non-empty and its
walks are non-trivial, U covers some other edge of G. Since G is connected, it
therefore has a vertex v that is incident both with an edge covered by U and
with an edge that is covered by W (by assumption) but not by U . Then the
family U(v) of all walks in U containing v is a non-empty proper subfamily of
the corresponding subfamily W(v) of W. As

∑
U∈U(v)

c(U) ∩ E(v) ⊆
∑
U∈U

c(U) = ∅, (3)

this contradicts our assumption that W is weakly sparse (at v).

Proof of Theorem 3. (i)→(ii) Extend W to the family W ′ of all the facial
walks of G in S. Since S is locally homeomorphic to the plane, W ′ covers every
edge of G twice, and elementary topological arguments show that W ′ is sparse
also at vertices. Hence dimW ′ = |W ′| − 1 by Lemma 8. Using (1) and Euler’s
formula (2), we deduce that

dim C(G) − ε = |E(G)| − |V (G)| + 1 − ε = |W ′| − 1 = dimW ′

as desired.
(ii)→(i). Replacing W with the extension of W whose existence is asserted

in (ii), we may assume that W itself is sparse and has codimension at most ε
in C(G). Let us further assume that the extension was chosen maximal, and
begin our proof by showing that W now is a double cover of G.

Suppose not. By assumption, W covers G. The set F :=
∑

W∈W c(W ) of
edges covered only once, therefore, contains all the edges not covered twice; in
particular F �= ∅. Note also that F lies in C(G), because every c(W ) does;
hence every vertex of (V, F ) has even degree. Our aim is to find a closed walk

2If we had defined sparseness at vertices for families of arbitrary sets of edges rather than
just for edge sets of the form c(U), as in the definition of ‘weakly sparse’, our proof below
would prove the lemma for arbitrary sparse families of edge sets.

9



W in (V, F ) such that W ′ := W ∪ {W} is again sparse; this will contradict our
maximal choice of W.

For every vertex v incident with an edge in F , consider the auxiliary graph
H(v) := H(W, v) defined at the start of this section. We know that H(v) �= ∅,
since W covers G. Let us show that H(v) is a forest. Suppose not, and let U
be the vertex set of a cycle in H(v). Then

∑
u∈U c(u) = 0. But this contradicts

the sparseness of W at v. Indeed, by assumption v is incident also with an edge
f ∈ F , and since W covers G, this edge also lies in some pass of W through v.
That pass, however, is not in U : as W covers f only once, it has degree at
most 1 in H(v).

The components of H(v), therefore, are paths. For every such path P put
∂P :=

∑
p∈V (P ) c(p); this is a set of two edges in F ∩E(v), and F ∩E(v) is the

disjoint union of these 2-sets. Let C(v) be a cycle on F ∩E(v) as its vertex set
such that E(C(v)) ⊇ { ∂P : P is a component of H(v) }. Call the edges in this
last set red , and the other edges of C(v) green; the edges of C(v) thus alternate
between red and green. (If H(v) has only one component, then C(v) is a pair
of parallel edges, one red and one green.)

To construct our additional walk W in (V, F ), we start by picking a vertex
v1 of G that is incident with an edge in F . Then H(v1) and C(v1) are defined.
Let W = v1f1v2f2 . . . fn−1vn be the unique maximal walk in (V, F ) such that
every fi is joined to fi+1 in C(vi+1) by a green edge and all the fi are distinct.
This walk W can only end in v1 (with the edge that is joined to f1 in C(v1) by
a green edge), so W is closed.

Since W contains each of its edges fi only once, the extended family W ′ =
W ∪ {W} is again sparse at edges; let us show that it is sparse also at vertices.
The passes of W through a vertex v are all triples evf such that ef is a green
edge of C(v). Adding these passes as new vertices to H(v), with adjacencies as
defined before, turns H(v) into a graph H ′(v) that is either a single cycle (if W
‘traverses’ every green edge of C(v)) or a disconnected graph whose components
are still paths: H ′(v) cannot contain cycles other than a Hamilton cycle, because
C(v) is a single cycle. Therefore, as any family F of passes of W ′ through v
with

∑
p∈F c(p) = ∅ induces a cycle in H ′(v), this can happen only when F is

the family of all passes of W ′ through v. Thus, W ′ is again sparse at vertices,
contradicting the maximal choice of W. This completes the proof that W is a
double cover of G.

Let us now construct the surface required for statement (i) of the theorem.
We shall obtain this as a 2-dimensional CW-complex C. To construct C, we start
with G as its 1-skeleton. As the 2-cells we take disjoint open discs DW ⊆ R2,
one for each walk W ∈ W, divide the boundary of DW into as many segments
as W is long, and map consecutive segments homeomorphically to consecutive
edges in W.

In order for S := |C| to be a surface, we have to check that every point has
an open neighbourhood that is homeomorphic to R2. For points in the interior
of 2-cells or edges, this is clear; recall that W is a double cover. Now consider a
vertex v of G. Define H(v) as earlier. Since W is a double cover, H(v) is now
2-regular, and since W is sparse at v it contains no cycle properly. Hence, H(v)
is a cycle. For each pass p = evf ∈ V (H(v)) we let D(p) be a closed disc whose
interior lies inside a disc DW such that p is a pass of W , choosing each D(p) so
that its boundary contains v and intersects W in one segment contained in e∪f
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and meeting both e and f . These discs D(p) can clearly be chosen with disjoint
interiors for different p. Using the elementary fact that the union of two closed
discs intersecting in a common segment of their boundaries is again a disc, one
easily shows inductively that the interior of the union of all the discs D(p) is an
open disc, and hence homeomorphic to R2. This completes the proof that S is
a surface.

Since C is finite, S is compact. Since G is connected, so is S. Finally,
Euler’s formula (2) applied to C, together with (1), Lemma 8 (actually, its trivial
inequality), and our assumption that W has codimension at most ε in C(G),
yields

ε(S) = 2 − (|V (G)| − |E(G) + |W|)
= (|E(G)| − |V (G)] + 1) − (|W| − 1)
= dim C(G) − dimW
≤ ε .

Thus, (i) is proved.

Theorem 3 implies the forward implication of Corollary 2, as follows.

Proof of Corollary 2. The backward direction follows immediately from that
of Corollary 5.

For the forward direction, let G and ε be such that G embeds in a surface
of Euler genus at most ε. Our aim is to find a certain family of closed walks of
codimension at most ε, so there is no loss of generality in choosing ε minimal, i.e.,
in assuming that ε = ε(G). Let G1, . . . , Gn be the components of G. For each
i = 1, . . . , n choose a genus-embedding Gi ↪→ Si. These are 2-cell-embeddings,
and by genus additivity we have ε1 + · · · + εn = ε for εi := ε(Si) = ε(Gi).
For each i let Wi be the family of facial walks of Gi in Si. By Theorem 3,
the Wi are sparse and have codimension at most εi in C(Gi): as Wi already
covers every edge of Gi twice, it cannot be extended to a larger sparse family.
Since the Gi are vertex-disjoint, W := W1 ∪ · · · ∪Wn is again sparse, and it has
codimension at most ε1 + · · · + εn = ε in C(G), since C(G) is the direct sum of
the spaces C(Gi).

Next, we prove Theorem 4. The core of the proof (from Theorem 3) is
the following ‘de-pinching’ lemma. It employs a standard trick from surface
surgery to dissolve pinchpoints, which was also used by Edmonds [5]. In our
terminology, it turns a weakly sparse family of walks into a sparse one:

Lemma 9. For every weakly sparse family W of closed walks in a connected
loopless graph G there exists a sparse family W ′ similar to W.

Proof. Among all the families W ′ = {W ′ : W ∈ W } similar to W choose one
with

∑
v∈V (G) γ(v) minimum, where γ(v) denotes the number of components of

H(W ′, v). We show that W ′ is sparse.
Suppose not. Being similar to W, the family W ′ is again weakly sparse, and

in particular sparse at edges. So it must fail to be sparse at some vertex v.
Then H ′ := H(W ′, v) contains a cycle C that is a component of H ′ but not
equal to H ′. Since W ′ is weakly sparse at v, one of the vertices of C must be
a pass p = evf of a walk W ′ ∈ W ′ which also contains a pass p′ = e′vf ′ that
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is a vertex in another component C ′ �= C of H ′. Choose these passes so that
W ′ has a subwalk vf . . . e′v not containing e or f ′. Let W ′′ be the closed walk
obtained from W ′ by reversing this subwalk (Figure 3), and let W ′′ be obtained
from W ′ by replacing W ′ with W ′′. Clearly, W ′′ is again a closed walk, and W ′′

is similar to W ′ and hence to W.

v

e f

e′f ′

W ′′

v

e f

e′f ′

W ′

Figure 3: Turning W ′ into W ′′ by reversing the segment vf . . . e′v

For vertices u �= v of G we have H(W ′′, u) = H(W ′, u), so γ(u) remains
unchanged. At v, however, γ(v) decreases, contradicting the choice of W ′.
Indeed, H ′′ := H(W ′′, v) arises from H ′ by the replacement of p = evf ∈ V (C)
and p′ = e′vf ′ ∈ V (C ′) with two new vertices, q := eve′ and q′ := fvf ′, and
redefining the incidences for the edges e, f, e′, f ′ ∈ E(H ′) = E(H ′′) accordingly.
As one easily checks (see Figure 4), this has the effect of merging the components
C and C ′ of H ′ into one new component, leaving the other components of H ′

intact. Thus, the components of H ′′ are those of H ′ other than C and C ′, plus
one new component arising from (C − p) ∪ (C ′ − p′) by adding the new vertex
q incident with e and e′ and the new vertex q′ incident with f and f ′ (leaving
the other incidences of e, e′, f, f ′ in H ′′ as they were in H ′).

f

e e′

f ′

p p′
C − pC C ′ − p′C ′

f

e e′

f ′

q

q ′

Figure 4: Merging the components C and C ′ of H ′ to form H ′′

Proof of Theorem 4. Subdividing every loop once, we may assume that G
has no loops.

To prove the implication (i)→(ii), consider an embedding of G as in (i). Let
W ′ denote the subfamily of the family of facial walks that is similar to W. By
Theorem 3, W ′ can be extended to a sparse family of closed walks in G that has
codimension at most ε in C(G). Replacing W ′ by W in this family, we obtain
an extension of W that is still weakly sparse, and hence satisfies (ii).

For a proof of the implication (ii)→(i), let us now assume (ii). Consider
the weakly sparse family W̃ ⊇ W provided by (ii), and use Lemma 9 to turn
it into a sparse family W̃ ′ similar to W̃. Then W̃ ′ has a subfamily W ′ similar
to W. By similarity, W̃ ′ has the same codimension in C(G) as W̃, at most ε.
By Theorem 3, there is a surface S of Euler genus at most ε in which G can
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be 2-cell-embedded so that the walks in W̃ ′ are among the facial walks. This
embedding satisfies (i), because W̃ ′ contains W ′.

Corollary 5 now follows from Theorem 4 and the forward direction of Corol-
lary 2 (which we deduced from Theorem 3):

Proof of Corollary 5. For the forward direction, let G be a graph embeddable
in a surface of Euler genus at most ε. Subdivide every loop once to obtain a
loopless graph Ġ. Clearly, the embedding of G defines one of Ġ. By the forward
direction of Corollary 2, there is a sparse family W of closed walks in Ġ that
covers Ġ and whose codimension in C(Ġ) .= C(G) is at most ε. Our task is to
show that every non-trivial walk W ∈ W defines a walk in G, i.e., contains no
pass of the form eve through a subdividing vertex v.

Suppose W does contain such a pass eve, and let f be the other edge of Ġ
at v. Then the family F = {eve} satisfies

∑
p∈F c(p) = 0, and since W covers f ,

F is a proper subfamily of A(W, v). This contradicts the fact that W is sparse
at v.

For a proof of the backward direction, let W be a weakly sparse family of
closed walks in G that covers G and has codimension at most ε in C(G). If G
has components G1, . . . , Gk, say, write Wi for the subfamily of walks contained
in Gi, and εi for the codimension of Wi in C(Gi). Then ε(Gi) ≤ εi, by (ii)→(i)
of Theorem 4. Moreover,

∑k
i=1 εi ≤ ε, since C(G) is the direct sum of the

spaces C(Gi). Hence, by genus additivity,

ε(G) =
k∑

i=1

ε(Gi) ≤
k∑

i=1

εi ≤ ε .

Thus, G can be embedded in a surface of Euler genus at most ε.
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