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Abstract

A set A of vertices of an undirected graph G is called k-edge-connected
in G if for all pairs of distinct vertices a, b ∈ A there exist k edge disjoint
a, b-paths in G. An A-tree is a subtree of G containing A, and an A-bridge
is a subgraph B of G which is either formed by a single edge with both
end vertices in A or formed by the set of edges incident with the vertices
of some component of G−A.

It is proved that (i) if A is k · (` + 2)-edge-connected in G and every A-
bridge has at most ` vertices in V (G) − A or at most ` + 2 vertices in
A then there exist k edge disjoint A-trees, and that (ii) if A is k-edge-
connected in G and B is an A-bridge such that B is a tree and every vertex
in V (B)− A has degree 3 then either A is k-edge-connected in G− e for
some e ∈ E(B) or A is (k − 1)-edge-connected in G− E(B).

AMS subject classification: 05C70, 05C40.

Keywords: Steiner tree, packing, connectivity, bridge.

1 Introduction

All graphs considered here are supposed to be finite and undirected and may
contain loops or multiple edges. For terminology not defined here see [2]. A
set A of vertices of a graph G is called k-edge-connected in G if for all pairs of
distinct vertices a, b ∈ A there exist k edge disjoint a, b-paths in G. A Steiner
tree with respect to A or, briefly, an A-tree is a subtree of G covering A.

By Tutte’s and Nash-Williams’s base packing theorem for graphs [14, 13]
it follows readily that every 2k-edge-connected graph has a collection of k edge
disjoint spanning trees (cf. [2]). It has been conjectured in [6] that there is the
following generalization to A-trees (see also [4] and [3]).
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Conjecture 1 [6] Every 2k-edge-connected set A of vertices in a graph G yields
k edge disjoint A-trees.

Throughout this paper, the empty graph is considered to be a ∅-tree, and “k
edge disjoint A-trees” actually means “a family of k edge disjoint A-trees”, so
that for |A| ≤ 1 there exist families of edge disjoint A-trees of any required
size. It is not difficult to prove that for each ` there exists an f`(k) such that
every f`(k)-edge-connected set A with |A| ≤ ` in some graph G admits a set of
k edge disjoint A-trees. The f`(k) derived in [6] is linear in k but exponential
in `, whereas from the results in [4] one can obtain a bound which is linear in
both ` and k, with a good constant. The optimal f2, which is f2(k) = k, is an
immediate consequence of the definitions, whereas determining the optimal f3,
which is f3(k) = b 8k+3

6 c, turned out to be more tedious (see [6] and [4]). In both
[6] and [4], conjectures on the optimum value of f`(k) have been made, and from
the estimations in [4] it follows that Conjecture 1 is true for |A| ≤ 5. Similar
results hold if A := V (G) − A is bounded: Every (2k + 2`)-edge-connected set
A with |V (G)−A| ≤ ` in some graph G admits a set of k edge disjoint A-trees
[6].

Recently, Lau proved that every 26k-edge-connected set A of vertices of some
graph G admits k edge disjoint A-trees [7], and a bound of 24k is given in
his thesis [8, Theorem 3.1.2]. These are the first bounds f(k) which do not
involve the size of A. Moreover, Lau’s proof yields a polytime approximation
algorithm for the Steiner tree packing problem, that is, given G and A ⊆ V (G)
with |A| ≥ 2, find a largest set of edge disjoint A-trees.

If V (G) − A is independent or, equivalently, A is dominating in G, then there
is a much better bound, namely f(k) = 3k [3], and if every vertex in V (G)−A
has an even degree then f(k) = 2k suffices [6], as conjectured.

First we prove a result which involves more structure of the instance (G,A). An
A-bridge is a subgraph B of G which is either formed by a single edge with both
end vertices in A or formed by the set of edges incident with the vertices of some
component of G − A. We prove that for all integers k, ` ≥ 0 every k · (` + 2)-
edge-connected set A of vertices in a graph G such that every A-bridge has at
most ` vertices in V (G)−A or at most `+2 vertices in A admits a set of k edge
disjoint A-trees.

This generalizes the initially mentioned statement on spanning trees in 2k-edge-
connected graphs (set ` = 0) as well as the situation that V (G)−A is indepen-
dent, where we have to take ` = 1 and obtain the same bound 3k as in [3]. (It
also equips us with an f`(k) as above, which is of the same order as the bound
from [4], but with a larger constant.)

In the second part of the paper we prove that if A is a k-edge-connected set
of vertices in G and B is an A-bridge such that B is a tree and every vertex
in V (B)− A has degree 3 then either A is k-edge-connected in G− e for some
e ∈ E(B) or A is (k − 1)-edge-connected in G − E(B). This provides a short
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cut for the determination of f3(k) as in [6], and we show how one would need
to generalize it in order to obtain an alternative proof of the statement of the
penultimate paragraph.

2 Essential edges in cubic bridges

Given two distinct vertices a, b of a graph G, let us denote by λG(a, b) the
maximum number of edge disjoint a, b-paths in G. We extend this to a mapping
λG : V (G) × V (G) → N ∪ {0,∞} by setting λG(a, a) := +∞ and extend the
natural order on N∪{0} to N∪{0,∞} by defining a ≤ +∞ for all a ∈ N∪{0,∞}.
An a, b-cut is a set of edges in G which intersects the edge set of every a, b-path.
For A ⊆ V (G), an A-cut is an a, b-cut for some vertices a 6= b from A. A
variant of Menger’s theorem states that for a 6= b in V (G), λG(a, b) equals the
minimum cardinality of an a, b-cut (cf. [2]), so that A ⊆ V (G) with |A| ≥ 2 is
k-edge-connected if and only if there is no A-cut of cardinality less than k. We
call an edge e = xy of G essential (for A being k-edge-connected in G), if A is k-
edge-connected in G and A is not k-edge-connected in G− e. This is equivalent
to the statement that A is k-edge-connected in G and e is contained in some A-
cut S of cardinality k; it is easy to see that in this case each component of G−S
which contains one of x, y must intersect A. A is minimally k-edge-connected in
G if every edge is essential for A being k-edge-connected in G.

We start with a useful observation whose ancestors can be found in [9] and [11].
For a graph G and X,Y ⊆ V (G), let EG(X,Y ) denote the set of edges xy with
x ∈ X, y ∈ Y . (If an edge e is denoted by a word xy then its endvertices are
assumed to be x and y.)

Lemma 1 Let A be a k-edge-connected set of vertices in a graph G. Let y ∈
V (G)−A be a vertex of degree 3, let xy, yz, wy be the three edges incident with
y, let S, T be A-cuts of cardinality k containing xy, yz, respectively, let C be
the component of G − S containing x, and let D be the component of G − T
containing y.

Then C ∩A ⊂ D ∩A or A is k-edge-connected in G− wy.

Proof. Let B1 := C∩D, B2 := C∩D, B3 := C∩D, B4 := C∩D, Ai := Bi∩A
for i ∈ {1, 2, 3, 4}, and Rij := EG(Bi, Bj) for i 6= j in {1, 2, 3, 4}. Then S =
R13 ∪R14 ∪R23 ∪R24 and T = R12 ∪R14 ∪R32 ∪R34. Set Qi = EG(Bi, Bi) =⋃

j∈{1,2,3,4}−{i}Rij for i ∈ {1, 2, 3, 4}. So xy, yz ∈ Q3. Observe that xy 6∈ T

and wy 6∈ T , for otherwise (T −{yz, xy})∪{wy} or (T −{yz, wy})∪{xy} would
be an A-cut, which contradicts the connectivity condition to A; in particular,
w, x ∈ D, so xy ∈ Q1. Symmetrically, w, z ∈ C (and yz ∈ Q4), so w ∈ B3, and
the objects are located as depicted in Figure 1.

If A2 6= ∅ 6= A3 then Q2, Q3 are A-cuts, so |Q2|, |Q3| ≥ k. From |Q2| + |Q3| ≤
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Figure 1: Location of the objects in Lemma 1.

|R21|+ |R23|+ |R24| + |R31|+ |R32|+ |R34| = |S|+ |T |− 2|R14| ≤ 2k we deduce
|Q2| = |Q3| = k, implying that (Q3 − {xy, yz}) ∪ {wy} is an A-cut, again a
contradiction.

It follows that one of A2, A3 is empty. As S, T are A-cuts, each of C,C,D,D
intersects A, implying A1 6= ∅ 6= A4. Now |Q1|, |Q4| ≥ k, and from |Q1|+ |Q4| ≤
|R12|+ |R13|+ |R14| + |R41|+ |R42|+ |R43| = |S|+ |T |− 2|R23| ≤ 2k we deduce
|Q1| = |Q4| = k. Take a ∈ A1 and b ∈ D ∩ A. There exists a set P of k edge
disjoint a, b-paths. Since Q1 is an a, b-cut, xy ∈ E(P) :=

⋃
P∈P E(P ), and since

T is an a, b-cut, yz ∈ E(P). As y has degree 3, y is contained in precisely one
path P ∈ P, and xy, yz ∈ E(P ), so wy 6∈ E(P). Taking a, a′ ∈ A1, b, b

′ ∈ D ∩A
we thus proved that there exist k edge disjoint a, b-paths and k edge disjoint
a, b′-paths and k edge disjoint a′, b-paths in G−wy. Given R ⊆ E(G−wy) with
|R| < k, at least one of the paths of each system survives in G − wy − R, so
that R is neither an a, a′-cut nor a b, b′-cut nor an a, b-cut in G−wy. It follows
that A−A3 is k-edge-connected in G− wy.

If A3 = ∅ then A is k-edge-connected in G−wy, and if A3 6= ∅ then A2 = ∅ and
C ∩A = A1 ⊂ A1 ∪A3 = D ∩A. �

Lemma 1 inductively extends to paths as follows.

Lemma 2 Let A be a k-edge-connected set of vertices in a graph G.

Let P = v0, v1, . . . , v` be a path of length ` ≥ 2 such that for i ∈ {1, . . . , `− 1},
vi is a vertex in V (G) − A of degree 3 and the three edges incident with vi

are essential for A being k-edge-connected. Let S, T be A-cuts of cardinality k
containing v0v1, v`−1v` respectively, let C be the component of G−S containing
v0 and D be the component of G− T containing v`−1.

Then C ∩A ⊂ D ∩A.
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Figure 2: Necessity of the degree condition in Theorem 1.

Proof. For i ∈ {2, . . . , `− 1}, let Ti be a cut of cardinality k containing vi−1vi.
Set T1 := S and T` := T . Let Ci be the component of G−Ti containing vi−1, so
C1 = C and C` = D. By Lemma 1, applied to vi−1, vi, vi+1, Ti, Ti+1 for x, y, z,
S, T we deduce Ci ∩A ⊂ Ci+1 ∩A. �

Lemma 2 enables us to reduce cycles in “internally 3-regular” A-bridges, yielding
the main result of this section.

Theorem 1 Let A be a k-edge-connected set of vertices in a graph G and let B
be an A-bridge such that every vertex x ∈ V (B)− A has degree 3 in G and the
three edges incident with x are essential for A being k-edge-connected.

Then every A-cut of cardinality k contains at most one edge of B. In particular,
B is a tree whose end vertices are the vertices of V (B) ∩A.

Proof. Suppose, to the contrary, that S is an A-cut of cardinality k containing
e 6= f in E(B). Then we may choose a path P = v0, v1, . . . , v` of length ` ≥ 2
with vi ∈ V (B)−A for all i ∈ {1, . . . , `−1} such that E(P )∩S = {v0v1, v`−1v`}.
Let C be the component of G − S containing v0 and let D be the component
of G − S containing v`−1. By Lemma 2, applied to T = S, C ∩ A ⊂ D ∩ A.
However, D = C by choice of P , a contradiction.

As every cycle intersects every cut in an even number of edges and every edge
of B is contained in some A-cut of cardinality k, B is a tree, and, as no vertex
of V (B) ∩ A separates the bridge B, the second part of the statement follows.

�

The degree condition to V (B) − A in Theorem 1 is necessary, as the graph G
in Figure 2 shows. The vertices in A are colored black, and A is minimally
2-edge-connected in G. G itself is the unique A-bridge, and every A-cut must
intersect it twice.

3 Graphs without large binary bridges

We proceed with a consequence of the following Theorem from [3]. Basic hy-
pergraph terminology can be found in [1]. A hypergraph is called k-partition-
connected for some integer k ≥ 0 if

eG(P) ≥ k · (|P| − 1) (1)
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holds for every partition P of V (G), where eG(P) denotes the number of edges
of G which intersect at least two distinct members of P. Observe that every
1-partition-connected hypergraph is connected.

Theorem 2 [3] A hypergraph is k-partition-connected if and only if it has k
edge disjoint 1-partition-connected spanning subhypergraphs.

From Theorem 2 we deduce the following.

Theorem 3 Let r ≥ 2 and A be an rk-edge-connected set of vertices in some
graph G such that X := V (G)−A is independent in G and dG(x) ≤ r for every
x ∈ X.

Then there exist k edge disjoint A-trees in G which are pairwise disjoint on X.

Proof. Without loss of generality we may assume that A is independent in G,
for subdividing every edge in E(G(A)) once and adding the subdivision vertices
to X keeps the conditions to the new instances G′, X ′, A′ = A alive, and if G′

admits a set of k edge disjoint A-trees pairwise disjoint on X ′ then we may
construct easily a system of k edge disjoint A-trees of G disjoint on X.

The set family (ex := NG(x))x∈X constitutes a hypergraph H on A. Let P be a
partition of V (H) = A into at least two classes. Let Y denote the set of vertices
in X which have neighbors in at least two members of P, and for P ∈ P, let
a(P ) denote the number of edges in G which connect a vertex in P to some
vertex in Y . Since A is rk-edge-connected in G, a(P ) ≥ rk for all P ∈ P, and
since dG(x) ≤ r for all x ∈ X we deduce r ·eH(P) ≥

∑
x∈Y dG(x) =

∑
P∈P a(P )

≥ rk|P|, so (1) holds.

By Theorem 2, H admits k edge disjoint (1-partition-) connected spanning
subhypergraphs H1, . . . ,Hk. Let Xi := {x ∈ X : ex ∈ E(Hi)}. Then the
graphs G(Xi ∪ A), i ∈ {1, . . . k} are connected subgraphs and pairwise disjoint
on X. Choose a spanning tree of each G(Xi∪A). This produces k edge disjoint
A-trees in G disjoint on X. �

The basic reduction technique to prove the following result is to split pairs of
edges at some vertex in a graph G. A splitting at x is a pair p = (wx, xy) of
distinct edges. The graph G(wx, xy) = G(p) obtained from G − {wx, xy} by
adding a single new bypass edge from w to y is also said to be obtained from G
by performing p. A splitting p at x is admissible if λG(p)(a, b) = λG(a, b) for all
a, b ∈ V (G)−{x}. Mader’s Splitting Lemma [10, 12] can be stated as follows.

Lemma 3 [10, 12] If x is a nonseparating vertex of the graph G of degree
distinct from 0, 1, 3 then there exists an admissible splitting at x.

Now we are prepared to prove the main result of this section.
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Theorem 4 Let ` ≥ 0 and A be a k · (` + 2)-edge-connected set of vertices in
some graph G such that every A-bridge has at most ` vertices in V (G) − A or
at most `+ 2 vertices in A.

Then there exist k edge disjoint A-trees.

Proof. We prove this by induction on |E(G)|+ |V (G)|. If there is an admissible
splitting p at some vertex x ∈ V (G) − A then A is k · (` + 2)-edge-connected
in G(p), and the vertex set of every A-bridge in G(p) is contained in the vertex
set of some A-bridge of G; by induction, G(p) has k edge disjoint A-trees, and
from these one easily obtains k edge disjoint A-trees in G. Hence there is no
such splitting and, by Lemma 3 we may assume that every vertex in V (G)−A
either separates G or has degree 0, 1 or 3. If x ∈ V (G) − A has degree 0 or 1
then we apply induction to G− x straightforwardly.

Now suppose that x ∈ V (G)−A separates G and let C be the set of components
of G − x. If there is a C ∈ C not containing vertices from A then we apply
induction to G − C straightforwardly. Otherwise, we take any C ∈ C and
observe that for any a ∈ A∩C 6= ∅ and any b ∈ A−C 6= ∅ there exist k · (`+ 2)
edge disjoint a, b-paths; since each of them contains x, A′ := (A ∩ C) ∪ {x} is
k · (`+2)-edge-connected in G′ := G(C ∪{x}). Since every A′-bridge B′ of G′ is
a subgraph of some A-bridge of G which, moreover, contains at least one vertex
from A−A′ if B′ contains x, we may apply induction to obtain k edge disjoint
A′-trees TC,1, . . . , TC,k in G′ — and so (

⋃
C∈C TC,i)i∈{1,...,k} is the desired family

of edge disjoint A-trees.

Hence every vertex in V (G) − A has degree 3. Furthermore, we may assume
that every edge e is essential for A being k · (` + 2)-edge-connected in G, as
otherwise A is k · (` + 2)-edge-connected in G − e and the statement follows
inductively. By Theorem 1, every A-bridge is a tree such that its vertices from
A have degree 1 and its vertices from V (G)−A have degree 3. As the number
of end vertices of such a tree equals 2 plus the number of its non-end-vertices,
the conditions to the A-bridges imply that it has at most `+ 2 end vertices.

Let G′ be obtained from G by contracting each component of G−A to a single
vertex. A remains k · (`+ 2)-connected in G′, X := V (G′)− A is independent,
and dG′(x) ≤ `+ 2 for every x ∈ X. By Theorem 3, there exist k edge disjoint
A-trees in G′ which are disjoint on X, and from these one easily obtains k edge
disjoint A-trees in G. �

For ` = 0, Theorem 4 states that every 2k-edge-connected graph admits k edge
disjoint spanning trees. For ` = 1 we deduce the existence of k edge disjoint
A-trees if A is 3k-edge-connected and V (G) − A is independent, which was
a Corollary in [3]. Equivalently, one could say that every 3k-edge-connected
dominating set A admits k edge disjoint A-spanning trees.

Furthermore, if |A| is bounded from above by some ` and is k · `-edge-connected
then G admits k edge disjoint A-trees, as every A-bridge contains at most `
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vertices from A. This bound has the same order of magnitude than the one in
[4], but a larger constant.

In [5] it as been shown that if A is minimally k-edge-connected in G and every
vertex in V (G)−A has odd degree then |V (G)| ≤ (k+1)|A|−2k [5, Theorem 6]
Let me briefly sketch an alternative proof, relying on Theorem 1 and the meth-
ods of the preceeding proof. We perform induction on |E(G)|+2

∑
b∈A dG(b). If

there occur cut vertices anywhere in G then we can eliminate them similarly as
in the proof of Theorem 4. By performing admissible splittings at vertices from
V (G)−A we can achieve that every vertex in V (G)−A has degree 3, as these
splittings keep A minimally k-edge-connected in G. Now every bridge is binary
by Theorem 1, which implies that for each b ∈ A, there are dG(b) edge disjoint
b, A − {b}-paths, each in a distinct A-bridge. If dG(b) ≥ k + 2 we thus may
perform an admissible splitting at b keeping A minimally k-edge-connected. If
dG(b) = k+ 1 then we perform an admissible splitting at b, which keeps A−{b}
minimally k-edge-connected, and consider the bypass edge h of the splitting.
Subdividing h by a new vertex y and adding a new edge from y to b produces
a new graph in which A is minimally k-edge-connected. Hence we may trans-
form the instance to a new one with possibly more vertices where every vertex
in A has degree k and every A-bridge is binary. Now consider the A-bridges
in G, say B1, . . . , B`. Then ` ≥ k, and so |V (G) − A| =

∑`
i=1 |V (Bi) − A| =∑`

i=1 |V (Bi) ∩A| − 2` ≤ k · |A| − 2k, which implies the statement.

4 Removing a single binary bridge

Let G be a graph and A ⊆ V (G). Let us call an A-bridge B binary if B is a
tree and the vertices in V (B)−A have degree 3 (those of V (B) ∩A must have
degree 1 since B is both an A-bridge and a tree). Hence Theorem 1 implies that
if every edge of B is essential for A being k-edge-connected and every vertex in
V (B)− A has degree 3 then B is binary. In this section we prove that if every
edge of a binary bridge is essential for A being k-edge-connected in G then
G − E(B) is (k − 1)-edge-connected. This is far from being true for arbitrary
A-bridges: They might disconnect A although each of its edges is essential, as
it is shown by replacing every edge xy of a tree on at least 3 vertices whose end
vertices constitute A with k distinct edges connecting x, y (Figure 2 displays
the case where the tree is a path of length 2 and k = 2).

We prefix the following lemma.

Lemma 4 Let A be a set of vertices in some graph G, B be an A-bridge, and
x, y ∈ V (G)− (A ∪ V (B)).

If A is k-edge-connected in G− E(B) and there exist k edge disjoint x, y-paths
in G then there exist k edge disjoint x, y-paths in G− E(B).
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Proof. For suppose, to the contrary, that there exists an {x, y}-cut T in G −
E(B) with |T | < k, and let C be the component of (G−E(B))− T containing
x. Then y ∈ C. As A is k-edge-connected in G − E(B), A ⊆ C or A ⊆ C,
and we may assume by symmetry that A ⊆ C. However, there exist k edge
disjoint x, y-paths in G, and since x 6∈ A ∪ V (B), each of them contains an
x,A ∪ {y}-path in G− E(B), which must intersect T — a contradiction. �

Theorem 5 Let A be a k-edge-connected set of vertices of some graph G and
suppose that B is a binary A-bridge such that every edge of B is essential for
A being k-edge-connected.

Then A is (k − 1)-edge-connected in G− E(B).

Proof. For an edge xy ∈ E(B), let T (x, y) denote the set of A-cuts of car-
dinality k which contain xy. Then T (x, y) 6= ∅, since xy is essential. For
T ∈ T (xy), let C(x, y, T ) denote the component of G − T containing x, and
let C(x, y) := {C(x, y, T ) : T ∈ T (x, y)}. Furthermore, let A(x, y) denote the
set of endvertices in the component B(x, y) of B − xy which contains x. As
the intersection of any T ∈ T (x, y) with E(B) equals {xy} by Theorem 1,
C(x, y, T )∩V (B)∩A = A(x, y). It is well-known and easy to see that C(x, y) is
closed under intersection, hence there is a unique minimal element in C(x, y) with
respect to ⊆, namely C(x, y) :=

⋂
C(x, y). Let T (x, y) := EG(C(x, y), C(x, y))

denote the corresponding A-cut from T (x, y).

Let ` := d(k − 1)/2e.

Claim 1. For each xy ∈ E(B), A(x, y) is `-edge-connected in C(x, y)− E(B).

We perform induction on |A(x, y)|. The statement is trivially true if |A(x, y)| =
1. If |A(x, y)| > 1 then x ∈ V (B)−A and there exist distinct x1, x2 in C(x, y)∩
NG(x). A(x, y) is the disjoint union of the two nonempty sets A1 := A(x1, x)
and A2 := A(x2, x). Since Ai ⊆ Di := C(x, y)∩C(xi, x) and A(y, x) ⊆ C(x, y)∩
C(xi, x) we deduce that EG(Di, Di) is an A-cut of cardinality k (similar to the
argument in the proof of Lemma 1). Since xi ∈ Di and x ∈ Di, Di ∈ C(xi, x)
follows — so Di = C(xi, x) by minimality of C(xi, y). Therefore, C(xi, x) ∩
C(x, y) = Di ∩ C(x, y) = ∅ for i ∈ {1, 2}. By induction, each of A1, A2 is `-
edge-connected in C(x, y)−E(B) ⊇ (C(x1, x)−E(B))∪ (C(x2, x)−E(B)), and
it suffices to prove that there exist ` edge disjoint A1, A2-paths in C(x, y)−E(B).

In G, there exist k edge disjoint A1, A2-paths. Since the collection of their edges
must cover T (x1, x) ∪ T (x2, x), x1xx2 is a subpath of one of them, and xy is
contained in neither of them. It follows that there exists a set P of k−1 A1, A2-
paths in G−(E(B(x, y))∪{xy}). Since every path in P which intersects C(x, y)
must contain two edges in T (x, y) − {xy}, there are at most b(k − 1)/2c such
paths. Consequently, P contains at least |P| − b(k − 1)/2c = ` A1, A2-paths in
C(x, y) not intersecting E(B), which proves Claim 1.

Claim 2. For each xy ∈ E(B), A(x, y) is (k − 1)-edge-connected in G−E(B).
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Again, the statement is trivially true for |A(x, y)| = 1. Again, if |A(x, y)| > 1
then x ∈ V (B)−A, there exist distinct x1, x2 in C(x, y) ∩NG(x), and C(xi, x)
and C(x, y) are disjoint for i ∈ {1, 2}; by induction, each of A1 := A(x1, x) and
A2 := A(x2, x) is (k − 1)-edge-connected in G − E(B), and it suffices to prove
that there exist k − 1 edge disjoint A1, A2-paths in G− E(B).

As in the proof of Claim 1, we find a set P of k − 1 edge disjoint A1, A2-paths
in G− (E(B(x, y))∪ {xy}). We consider these paths as being oriented from A1

towards A2.

For P ∈ P, let Q(P ) be the set of oriented subpaths of P of length at least
two whose endvertices are in C(x, y) and whose internal vertices are in C(x, y).
Let q := |{P ∈ P : Q(P ) 6= ∅}|, let R(P ) denote the set of components of
P − E(Q(P )), and let Q :=

⋃
P∈P Q(P ).

Let H be obtained from G(C(x, y)) by adding two new vertices a, b, taking the
union with the paths from Q and redirecting their initial edges from a towards
the respective old second vertices and their terminal edges from the resepective
penultimate vertices towards b. By construction, there exist q edge disjoint a, b-
paths in H, and since their initial and terminal edges correspond to pairwise
distinct edges in T (x, y)− {xy}, q ≤ b(k − 1)/2c ≤ `.

Now B(y, x) is an A(y, x)-bridge in H, and A(y, x) is q-edge-connected in H −
E(B) by Claim 1 applied to yx for xy (since C(x, y) ⊇ C(y, x)). Applying
Lemma 4 to the appropriate objects we find a set S of q edge disjoint a, b-paths
in H−B(y, x), and the set of edges in G corresponding to the edges of the paths
in S together with the edges of the paths in the sets R(P ) form a subgraph of
G− E(B) which contains k − 1 edge disjoint A1, A2-paths.

This proves Claim 2.

Claim 3. A ∩ V (B) is (k − 1)-edge-connected in G− E(B).

Take u 6= v in A ∩ V (B). There exists an u, v-path P in B, and if it has length
less than 2 then |E(B)| = 1 and we find k−1 edge disjoint u, v-paths in G−E(B)
by trivial reasons. If, otherwise, P contains a vertex x in V (B)−A then x has
a neighbor y ∈ V (B) − V (P ), and, consequently, u, v ∈ A(x, y), and Claim 2
yields k − 1 edge disjoint u, v-paths, proving Claim 3.

For an arbitrary u ∈ A − V (B), we consider v ∈ A ∩ V (B). As there exist k
edge disjoint u, v-paths in G, there exist k edge disjoint u,A ∩ V (B)-paths in
G−E(B). Together with Claim 3 this proves the statement of the Theorem. �

Theorem 5 provides a two pages short cut in the argument of [6] showing
that any b 8k+3

6 c-edge-connected set {a, b, c} of vertices admits k edge disjoint
{a, b, c}-trees (that is, f3(k) ≤ b 8k+3

6 c, cf. introduction): Performing induction
on k, we first reduce the problem to the case that every {a, b, c}-bridge of the
given graph G is binary, just as in the proof of Theorem 4; if V (G) = {a, b, c}
then the statement follows by a result on spanning trees from [6], and oth-
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erwise there is a further vertex x with edges xa, xb, xc which constitute a bi-
nary {a, b, c}-bridge B and, at the same time, an {a, b, c}-tree. By Theorem 5,
G−E(B) is (b 8k+3

6 c−1)-edge-connected and hence b 8(k−1)+3
6 c-edge-connected;

so there are k− 1 edge disjoint {a, b, c}-trees in G by induction, and they form,
together with B, the desired family of k edge disjoint {a, b, c}-trees of G.

It seems to be a difficult problem to generalize Theorem 5 to the deletion of
more than one A-bridge. It could be possible that under the assumptions that
A is minimally k-edge-connected in G and that there are only binary A-bridges,
A remains (k − `)-edge-connected in any graph obtained from G by removing
the edges of any ` A-bridges. For k = 2 this is true by Theorem 5, but it is not
clear why for some 3-edge-connected set A there cannot exist B,B′ such that
A is disconnected in G − (E(B) ∪ E(B′)). The case ` = k − 1 is particularly
interesting, as it would imply that the edge connectivity of A is inherited to the
“bridge hypergraph” if all bridges are binary:

Problem 1 Is it true that if A is a minimally k-edge-connected set of vertices
in some graph G and every A-bridge is a binary tree then the hypergraph H on
A whose edges are formed by the family of sets of endvertices of A-bridges in G
is k-edge-connected?

An affirmative answer to Problem 1 would yield an alternative proof for Theorem
4: After reduction to the case that A is minimally k · (`+ 2)-edge-connected in
G and every A-bridge is binary, as in the present proof of Theorem 4, we would
know that H as in Problem 1 is k · (`+ 2)-edge-connected and every edge of H
had at most `+ 2 vertices. By another result of [3], H is k-partition-connected
and thus admits k (1-partition-) connected spanning subhypergraphs, which
easily yield the desired family of k edge disjoint A-trees in G.
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