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Abstract

A set A of vertices of an undirected graph G is called k-edge-connected
in G if for all pairs of distinct vertices a,b € A there exist k edge disjoint
a, b-paths in G. An A-tree is a subtree of G containing A, and an A-bridge
is a subgraph B of G which is either formed by a single edge with both
end vertices in A or formed by the set of edges incident with the vertices
of some component of G — A.

It is proved that (i) if A is k- (£ 4+ 2)-edge-connected in G and every A-
bridge has at most ¢ vertices in V(G) — A or at most £ 4+ 2 vertices in
A then there exist k edge disjoint A-trees, and that (ii) if A is k-edge-
connected in G and B is an A-bridge such that B is a tree and every vertex
in V(B) — A has degree 3 then either A is k-edge-connected in G — e for
some e € E(B) or A is (k — 1)-edge-connected in G — E(B).

AMS subject classification: 05C70, 05C40.

Keywords: Steiner tree, packing, connectivity, bridge.

1 Introduction

All graphs considered here are supposed to be finite and undirected and may
contain loops or multiple edges. For terminology not defined here see [2]. A
set A of vertices of a graph G is called k-edge-connected in G if for all pairs of
distinct vertices a,b € A there exist k edge disjoint a, b-paths in G. A STEINER
tree with respect to A or, briefly, an A-tree is a subtree of G covering A.

By TUTTE’s and NASH-WILLIAMS’s base packing theorem for graphs [14, 13]
it follows readily that every 2k-edge-connected graph has a collection of k edge
disjoint spanning trees (cf. [2]). It has been conjectured in [6] that there is the
following generalization to A-trees (see also [4] and [3]).



Conjecture 1 [6] Every 2k-edge-connected set A of vertices in a graph G yields
k edge disjoint A-trees.

Throughout this paper, the empty graph is considered to be a @-tree, and “k
edge disjoint A-trees” actually means “a family of k£ edge disjoint A-trees”, so
that for |A] < 1 there exist families of edge disjoint A-trees of any required
size. It is not difficult to prove that for each ¢ there exists an fy(k) such that
every f¢(k)-edge-connected set A with |A| < £ in some graph G admits a set of
k edge disjoint A-trees. The f,;(k) derived in [6] is linear in k but exponential
in ¢, whereas from the results in [4] one can obtain a bound which is linear in
both ¢ and k, with a good constant. The optimal fy, which is fo(k) = k, is an
immediate consequence of the definitions, whereas determining the optimal f3,
which is f3(k) = |22 |, turned out to be more tedious (see [6] and [4]). In both
[6] and [4], conjectures on the optimum value of f;(k) have been made, and from
the estimations in [4] it follows that Conjecture 1 is true for |A| < 5. Similar
results hold if A := V(G) — A is bounded: Every (2k + 2/)-edge-connected set
A with |V(G) — A| < £ in some graph G admits a set of k edge disjoint A-trees
[6].

Recently, LAU proved that every 26k-edge-connected set A of vertices of some
graph G admits k edge disjoint A-trees [7], and a bound of 24k is given in
his thesis [8, Theorem 3.1.2]. These are the first bounds f(k) which do not
involve the size of A. Moreover, LAU’s proof yields a polytime approximation
algorithm for the STEINER tree packing problem, that is, given G and A C V(G)
with |A| > 2, find a largest set of edge disjoint A-trees.

If V(G) — A is independent or, equivalently, A is dominating in G, then there
is a much better bound, namely f(k) = 3k [3], and if every vertex in V(G) — A
has an even degree then f(k) = 2k suffices [6], as conjectured.

First we prove a result which involves more structure of the instance (G, A). An
A-bridge is a subgraph B of G which is either formed by a single edge with both
end vertices in A or formed by the set of edges incident with the vertices of some
component of G — A. We prove that for all integers k,¢ > 0 every k - (£ + 2)-
edge-connected set A of vertices in a graph G such that every A-bridge has at
most ¢ vertices in V(G) — A or at most ¢+ 2 vertices in A admits a set of k edge
disjoint A-trees.

This generalizes the initially mentioned statement on spanning trees in 2k-edge-
connected graphs (set £ = 0) as well as the situation that V(G) — A is indepen-
dent, where we have to take £ = 1 and obtain the same bound 3k as in [3]. (It
also equips us with an fy(k) as above, which is of the same order as the bound
from [4], but with a larger constant.)

In the second part of the paper we prove that if A is a k-edge-connected set
of vertices in G and B is an A-bridge such that B is a tree and every vertex
in V(B) — A has degree 3 then either A is k-edge-connected in G — e for some
e € E(B) or Ais (k — 1)-edge-connected in G — E(B). This provides a short



cut for the determination of f3(k) as in [6], and we show how one would need
to generalize it in order to obtain an alternative proof of the statement of the
penultimate paragraph.

2 [Essential edges in cubic bridges

Given two distinct vertices a,b of a graph G, let us denote by Ag(a,b) the
maximum number of edge disjoint a, b-paths in G. We extend this to a mapping
A¢ 1 V(G) x V(G) — NU {0,000} by setting Ag(a,a) := +oo and extend the
natural order on NU{0} to NU{0, oo} by defining a < 400 for all a € NU{0, co}.
An a,b-cut is a set of edges in GG which intersects the edge set of every a, b-path.
For A C V(G), an A-cut is an a,b-cut for some vertices a # b from A. A
variant of MENGER’s theorem states that for a # b in V(G), Ag(a,b) equals the
minimum cardinality of an a, b-cut (cf. [2]), so that A C V(G) with |A| > 2 is
k-edge-connected if and only if there is no A-cut of cardinality less than k. We
call an edge e = zy of G essential (for A being k-edge-connected in G), if A is k-
edge-connected in G and A is not k-edge-connected in G — e. This is equivalent
to the statement that A is k-edge-connected in G and e is contained in some A-
cut S of cardinality k; it is easy to see that in this case each component of G — .S
which contains one of x,y must intersect A. A is minimally k-edge-connected in
G if every edge is essential for A being k-edge-connected in G.

We start with a useful observation whose ancestors can be found in [9] and [11].
For a graph G and X,Y C V(G), let Eg(X,Y) denote the set of edges xy with
x € X, yeY. (If an edge e is denoted by a word xy then its endvertices are
assumed to be x and y.)

Lemma 1 Let A be a k-edge-connected set of vertices in a graph G. Let y €
V(G) — A be a vertex of degree 3, let xy,yz,wy be the three edges incident with
y, let S, T be A-cuts of cardinality k containing xy,yz, respectively, let C be
the component of G — S containing z, and let D be the component of G — T
containing vy.

Then CNAC DNA or A is k-edge-connected in G — wy.

Proof. Let By :=CND, By :=CND, B3:=CND, By:=CND, 4, :==B;NA
for ¢ € {1,2,3,4}, and R;; := Eg(B;, B;) for i # j in {1,2,3,4}. Then S =
R13 U R14 U R23 U R24 and T = R12 ] R14 ] R32 U R34. Set Ql = EG(BiaE) =
Ujeqi,2.3.41—qiy Bij for i € {1,2,3,4}. So ay,yz € Q3. Observe that zy ¢ T
and wy & T, for otherwise (T —{yz, zy}) U{wy} or (T —{yz, wy})U{zy} would
be an A-cut, which contradicts the connectivity condition to A; in particular,
w,r € D, so xy € Q1. Symmetrically, w,z € C (and yz € Q4), so w € Bz, and
the objects are located as depicted in Figure 1.

If Ay # 0 # Az then Qo, Q3 are A-cuts, so |Q2l,|Q3] > k. From |Qa] + |Q3] <
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Figure 1: Location of the objects in Lemma 1.

|Ro1| + |Ras| + |Roal + |R31| + |Raz| + |R3a| = |S| 4+ |T| — 2| R14| < 2k we deduce
|Q2] = |Q3] = k, implying that (Qs — {zy,yz}) U {wy} is an A-cut, again a
contradiction.

It follows that one of Ag, A3 is empty. As S,T are A-cuts, each of C,C,D,D
intersects A, implying Ay # 0 # A4. Now |@Q1], Q4| > k, and from |Q1]+|Q4| <
|Ri2| + |Ri3| + |R1a| + |Ra1| + |Raz| + |R§| = |S|+|T| — 2|Res| < 2k we deduce
|Q1| = |Q4] = k. Take a € A; and b € D N A. There exists a set P of k edge
disjoint a, b-paths. Since @y is an a, b-cut, xy € E(P) := Jpp E(P), and since
T is an a,b-cut, yz € E(P). As y has degree 3, y is contained in precisely one
path P € P, and zy,yz € E(P), so wy ¢ E(P). Taking a,a’ € A1,b,t/ € DN A
we thus proved that there exist k edge disjoint a,b-paths and k edge disjoint
a, b'-paths and k edge disjoint ', b-paths in G —wy. Given R C E(G —wy) with
|R| < E, at least one of the paths of each system survives in G — wy — R, so
that R is neither an a, a’-cut nor a b, b’-cut nor an a, b-cut in G —wy. It follows
that A — Aj is k-edge-connected in G — wy.

If A3 = () then A is k-edge-connected in G —wy, and if A3 # () then Ay = () and
CNA=A, C AiUA3=DnNA. O

Lemma 1 inductively extends to paths as follows.

Lemma 2 Let A be a k-edge-connected set of vertices in a graph G.

Let P = vg,v1,...,v; be a path of length ¢ > 2 such that for i € {1,...,0— 1},
v; s a vertex in V(G) — A of degree 3 and the three edges incident with v;
are essential for A being k-edge-connected. Let S,T be A-cuts of cardinality k
containing vouy, ve—1vg Tespectively, let C be the component of G — S containing
vg and D be the component of G — T containing ve_1.

Then CNACDNA.
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Figure 2: Necessity of the degree condition in Theorem 1.

Proof. Fori € {2,...,£—1}, let T; be a cut of cardinality k containing v;_1v;.
Set Th := .S and Ty := T. Let C; be the component of G —T; containing v;_1, so
C1 = C and Cy = D. By Lemma 1, applied to v;_1,v;,vi41, T3, Ti41 for z,y, z,
S, T we deduce C; N A C Cipq NA. O

Lemma 2 enables us to reduce cycles in “internally 3-regular” A-bridges, yielding
the main result of this section.

Theorem 1 Let A be a k-edge-connected set of vertices in a graph G and let B
be an A-bridge such that every verter x € V(B) — A has degree 3 in G and the
three edges incident with x are essential for A being k-edge-connected.

Then every A-cut of cardinality k contains at most one edge of B. In particular,
B is a tree whose end vertices are the vertices of V(B) N A.

Proof. Suppose, to the contrary, that S is an A-cut of cardinality k£ containing
e # f in E(B). Then we may choose a path P = vg,v1,...,vp of length £ > 2
withwv; € V(B)—Aforalli € {1,...,£—1} such that E(P)NS = {vgv1,ve_10¢}.
Let C be the component of G — S containing vy and let D be the component
of G — S containing vy_1. By Lemma 2, applied to T = S, CNA C DnN A.
However, D = C by choice of P, a contradiction.

As every cycle intersects every cut in an even number of edges and every edge
of B is contained in some A-cut of cardinality k, B is a tree, and, as no vertex
of V(B) N A separates the bridge B, the second part of the statement follows.

O

The degree condition to V(B) — A in Theorem 1 is necessary, as the graph G
in Figure 2 shows. The vertices in A are colored black, and A is minimally
2-edge-connected in G. G itself is the unique A-bridge, and every A-cut must
intersect it twice.

3 Graphs without large binary bridges

We proceed with a consequence of the following Theorem from [3]. Basic hy-
pergraph terminology can be found in [1]. A hypergraph is called k-partition-
connected for some integer k > 0 if

e¢(P) = k-(P|-1) (1)



holds for every partition P of V(G), where ec(P) denotes the number of edges
of G which intersect at least two distinct members of P. Observe that every
1-partition-connected hypergraph is connected.

Theorem 2 [3] A hypergraph is k-partition-connected if and only if it has k
edge disjoint 1-partition-connected spanning subhypergraphs.

From Theorem 2 we deduce the following.

Theorem 3 Let r > 2 and A be an rk-edge-connected set of vertices in some
graph G such that X := V(G) — A is independent in G and dg(z) < r for every
reX.

Then there exist k edge disjoint A-trees in G which are pairwise disjoint on X.

Proof. Without loss of generality we may assume that A is independent in G,
for subdividing every edge in EF(G(A)) once and adding the subdivision vertices
to X keeps the conditions to the new instances G', X', A’ = A alive, and if G’
admits a set of k edge disjoint A-trees pairwise disjoint on X’ then we may
construct easily a system of k edge disjoint A-trees of G disjoint on X.

The set family (e, := Ng(z))zex constitutes a hypergraph H on A. Let P be a
partition of V(H) = A into at least two classes. Let Y denote the set of vertices
in X which have neighbors in at least two members of P, and for P € P, let
a(P) denote the number of edges in G which connect a vertex in P to some
vertex in Y. Since A is rk-edge-connected in G, a(P) > rk for all P € P, and
since dg(x) < r for all z € X we deduce r-ex(P) > 3. oy da(x) =3 pep a(P)
> rk|P|, so (1) holds.

By Theorem 2, H admits k edge disjoint (l-partition-) connected spanning
subhypergraphs Hy,...,H,. Let X; := {& € X : e, € E(H;)}. Then the
graphs G(X; U A), i € {1,...k} are connected subgraphs and pairwise disjoint
on X. Choose a spanning tree of each G(X; U A). This produces k edge disjoint
A-trees in G disjoint on X. O

The basic reduction technique to prove the following result is to split pairs of
edges at some vertex in a graph G. A splitting at x is a pair p = (wzx, zy) of
distinct edges. The graph G(wz,zy) = G(p) obtained from G — {wz,zy} by
adding a single new bypass edge from w to y is also said to be obtained from G
by performing p. A splitting p at x is admissible if Ag(,)(a,b) = Ag(a,b) for all
a,b € V(G) — {z}. MADER’s Splitting Lemma [10, 12] can be stated as follows.

Lemma 3 [10, 12] If x is a nonseparating vertex of the graph G of degree
distinct from 0,1,3 then there exists an admissible splitting at x.

Now we are prepared to prove the main result of this section.



Theorem 4 Let £ > 0 and A be a k- (¢ + 2)-edge-connected set of vertices in
some graph G such that every A-bridge has at most £ vertices in V(G) — A or
at most £ + 2 vertices in A.

Then there exist k edge disjoint A-trees.

Proof. We prove this by induction on |E(G)|+|V(G)|. If there is an admissible
splitting p at some vertex x € V(G) — A then A is k - (£ 4 2)-edge-connected
in G(p), and the vertex set of every A-bridge in G(p) is contained in the vertex
set of some A-bridge of G; by induction, G(p) has k edge disjoint A-trees, and
from these one easily obtains k edge disjoint A-trees in G. Hence there is no
such splitting and, by Lemma 3 we may assume that every vertex in V(G) — A
either separates G or has degree 0,1 or 3. If x € V(G) — A has degree 0 or 1
then we apply induction to G — z straightforwardly.

Now suppose that x € V(G) — A separates G and let C be the set of components
of G — z. If there is a C € C not containing vertices from A then we apply
induction to G — C straightforwardly. Otherwise, we take any C' € C and
observe that for any a € ANC # 0 and any b € A— C # () there exist k- (£ + 2)
edge disjoint a, b-paths; since each of them contains z, A’ := (AN C) U {z} is
k- (£ + 2)-edge-connected in G’ := G(CU{x}). Since every A’-bridge B’ of G’ is
a subgraph of some A-bridge of G which, moreover, contains at least one vertex
from A — A’ if B’ contains x, we may apply induction to obtain k edge disjoint
Al-trees To1, ..., Tok in G' — and so (Ugee T0,i)ieq1,....k} 18 the desired family
of edge disjoint A-trees.

Hence every vertex in V(G) — A has degree 3. Furthermore, we may assume
that every edge e is essential for A being k - (¢ + 2)-edge-connected in G, as
otherwise A is k - (¢ + 2)-edge-connected in G — e and the statement follows
inductively. By Theorem 1, every A-bridge is a tree such that its vertices from
A have degree 1 and its vertices from V(G) — A have degree 3. As the number
of end vertices of such a tree equals 2 plus the number of its non-end-vertices,
the conditions to the A-bridges imply that it has at most £ + 2 end vertices.

Let G’ be obtained from G by contracting each component of G — A to a single
vertex. A remains k - (¢ + 2)-connected in G, X := V(G’) — A is independent,
and dg/(z) < £+ 2 for every € X. By Theorem 3, there exist k edge disjoint
A-trees in G’ which are disjoint on X, and from these one easily obtains k edge
disjoint A-trees in G. O

For ¢ = 0, Theorem 4 states that every 2k-edge-connected graph admits & edge
disjoint spanning trees. For ¢ = 1 we deduce the existence of k edge disjoint
A-trees if A is 3k-edge-connected and V(G) — A is independent, which was
a Corollary in [3]. Equivalently, one could say that every 3k-edge-connected
dominating set A admits k£ edge disjoint A-spanning trees.

Furthermore, if | A| is bounded from above by some ¢ and is k - {-edge-connected
then G admits k edge disjoint A-trees, as every A-bridge contains at most ¢



vertices from A. This bound has the same order of magnitude than the one in
[4], but a larger constant.

In [5] it as been shown that if A is minimally k-edge-connected in G and every
vertex in V(G) — A has odd degree then |V(G)| < (k+1)|A| -2k [5, Theorem 6]
Let me briefly sketch an alternative proof, relying on Theorem 1 and the meth-
ods of the preceeding proof. We perform induction on [E(G)|+2) ", 4 da(b). If
there occur cut vertices anywhere in G then we can eliminate them similarly as
in the proof of Theorem 4. By performing admissible splittings at vertices from
V(G) — A we can achieve that every vertex in V(G) — A has degree 3, as these
splittings keep A minimally k-edge-connected in G. Now every bridge is binary
by Theorem 1, which implies that for each b € A, there are dg(b) edge disjoint
b, A — {b}-paths, each in a distinct A-bridge. If dg(b) > k + 2 we thus may
perform an admissible splitting at b keeping A minimally k-edge-connected. If
de(b) = k+1 then we perform an admissible splitting at b, which keeps A — {b}
minimally k-edge-connected, and consider the bypass edge h of the splitting.
Subdividing h by a new vertex y and adding a new edge from y to b produces
a new graph in which A is minimally k-edge-connected. Hence we may trans-
form the instance to a new one with possibly more vertices where every vertex
in A has degree k and every A-bridge is binary. Now consider the A-bridges
in G, say By,...,Bs. Then £ > k, and so |V(G) — A| = Zle V(B;) — Al =
Zle |[V(B;) N A| —2¢ < k- |A] — 2k, which implies the statement.

4 Removing a single binary bridge

Let G be a graph and A C V(G). Let us call an A-bridge B binary if B is a
tree and the vertices in V(B) — A have degree 3 (those of V/(B) N A must have
degree 1 since B is both an A-bridge and a tree). Hence Theorem 1 implies that
if every edge of B is essential for A being k-edge-connected and every vertex in
V(B) — A has degree 3 then B is binary. In this section we prove that if every
edge of a binary bridge is essential for A being k-edge-connected in G then
G — E(B) is (k — 1)-edge-connected. This is far from being true for arbitrary
A-bridges: They might disconnect A although each of its edges is essential, as
it is shown by replacing every edge xy of a tree on at least 3 vertices whose end
vertices constitute A with & distinct edges connecting z,y (Figure 2 displays
the case where the tree is a path of length 2 and k& = 2).

We prefix the following lemma.

Lemma 4 Let A be a set of vertices in some graph G, B be an A-bridge, and
xz,y € V(G) — (AUuV(B)).

If A is k-edge-connected in G — E(B) and there exist k edge disjoint ,y-paths
in G then there exist k edge disjoint x,y-paths in G — E(B).



Proof. For suppose, to the contrary, that there exists an {z,y}-cut T in G —
E(B) with |T'| < k, and let C be the component of (G — E(B)) — T containing
x. Then y € C. As A is k-edge-connected in G — E(B), A C C or A C C,
and we may assume by symmetry that A C C. However, there exist k edge
disjoint z,y-paths in G, and since z ¢ AU V(B), each of them contains an
z, AU {y}-path in G — E(B), which must intersect 7' — a contradiction. O

Theorem 5 Let A be a k-edge-connected set of vertices of some graph G and
suppose that B is a binary A-bridge such that every edge of B is essential for
A being k-edge-connected.

Then A is (k — 1)-edge-connected in G — E(B).

Proof. For an edge zy € E(B), let 7T (z,y) denote the set of A-cuts of car-
dinality & which contain xy. Then 7 (z,y) # 0, since zy is essential. For
T € T(xy), let C(x,y,T) denote the component of G — T containing x, and
let C(z,y) := {C(x,y,T) : T € T(z,y)}. Furthermore, let A(x,y) denote the
set of endvertices in the component B(z,y) of B — xy which contains z. As
the intersection of any T' € T (z,y) with E(B) equals {zy} by Theorem 1,
C(z,y, T)NV(B)NA = A(z,y). Tt is well-known and easy to see that C(z,y) is
closed under intersection, hence there is a unique minimal element in C(z, y) with
respect to C, namely C(z,y) := (C(z,y). Let T(x,y) := Eq(C(x,y),C(z,y))
denote the corresponding A-cut from 7 (z,y).

Let ¢ :=[(k—1)/2].

Claim 1. For each zy € E(B), A(x,y) is f-edge-connected in C(z,y) — E(B).

We perform induction on |A(z,y)|. The statement is trivially true if |A(z,y)| =
1. If |JA(z,y)| > 1 then z € V(B) — A and there exist distinct 1, 22 in C(z,y)N
Ng(z). A(x,y) is the disjoint union of the two nonempty sets 4; := A(z1,x)
and As := A(x,x). Since A; C D; := C(z,y)NC(z;,x) and A(y,x) C C(z,y)N
C(z4,7) we deduce that Eg(D;, D;) is an A-cut of cardinality k (similar to the
argument in the proof of Lemma 1). Since x; € D; and x € D;, D; € C(x;, )
follows — so D; = C(z;,«) by minimality of C(z;,y). Therefore, C(x;,z) N
C(z,y) = D;NC(z,y) = 0 for i € {1,2}. By induction, each of Ay, Ay is ¢-
edge-connected in C(z,y) — E(B) 2 (C(z1,2) — E(B))U(C(x2,z) — E(B)), and

it suffices to prove that there exist ¢ edge disjoint A, Ay-paths in C(z,y)—E(B).

In G, there exist k edge disjoint Ay, As-paths. Since the collection of their edges
must cover T(z1,2) U T(x9, ), 1222 is a subpath of one of them, and xy is
contained in neither of them. It follows that there exists a set P of k—1 A7, Ao-
paths in G— (E(B(z,y))U{zy}). Since every path in P which intersects C(z, y)
must contain two edges in T'(x,y) — {zy}, there are at most |(k — 1)/2] such
paths. Consequently, P contains at least |P| — |(k — 1)/2] = £ Ay, As-paths in
C(z,y) not intersecting F(B), which proves Claim 1.

Claim 2. For each zy € E(B), A(x,y) is (k — 1)-edge-connected in G — E(B).



Again, the statement is trivially true for |A(x,y)| = 1. Again, if |A(z,y)| > 1
then z € V(B) — A, there exist distinct z1, 22 in C(z,y) N Ng(z), and C(z;, x)
and C(x,y) are disjoint for ¢ € {1,2}; by induction, each of Ay := A(x1,x) and
Ag = A(xg,z) is (k — 1)-edge-connected in G — E(B), and it suffices to prove
that there exist k — 1 edge disjoint A, As-paths in G — E(B).

As in the proof of Claim 1, we find a set P of k£ — 1 edge disjoint A;, As-paths
in G— (E(B(z,y))U{zy}). We consider these paths as being oriented from A
towards As.

For P € P, let Q(P) be the set of oriented subpaths of P of length at least
two whose endvertices are in C(x,y) and whose internal vertices are in C(z,y).
Let ¢ := [{P € P : Q(P) # 0}|, let R(P) denote the set of components of
P —E(Q(P)), and let Q :=Jpp Q(P).

Let H be obtained from G(C(x,y)) by adding two new vertices a, b, taking the
union with the paths from Q and redirecting their initial edges from a towards
the respective old second vertices and their terminal edges from the resepective
penultimate vertices towards b. By construction, there exist ¢ edge disjoint a, b-
paths in H, and since their initial and terminal edges correspond to pairwise
distinct edges in T'(z,y) — {zy}, ¢ < [(k—1)/2] < L.

Now B(y,x) is an A(y,x)-bridge in H, and A(y, x) is g-edge-connected in H —
E(B) by Claim 1 applied to yz for zy (since C(x,y) 2 C(y,x)). Applying
Lemma 4 to the appropriate objects we find a set S of ¢ edge disjoint a, b-paths
in H— B(y, ), and the set of edges in G corresponding to the edges of the paths
in S together with the edges of the paths in the sets R(P) form a subgraph of
G — E(B) which contains k — 1 edge disjoint A;, As-paths.

This proves Claim 2.

Claim 3. ANV(B) is (k — 1)-edge-connected in G — E(B).

Take u # v in ANV(B). There exists an u, v-path P in B, and if it has length
less than 2 then |E(B)| = 1 and we find k—1 edge disjoint u, v-paths in G—E(B)
by trivial reasons. If, otherwise, P contains a vertex x in V(B) — A then z has
a neighbor y € V(B) — V(P), and, consequently, u,v € A(x,y), and Claim 2
yields k — 1 edge disjoint u, v-paths, proving Claim 3.

For an arbitrary v € A — V(B), we consider v € ANV(B). As there exist k
edge disjoint u,v-paths in G, there exist k edge disjoint u, A N V(B)-paths in
G — E(B). Together with Claim 3 this proves the statement of the Theorem. O

Theorem 5 provides a two pages short cut in the argument of [6] showing
that any \_&;?’J—edge—connected set {a, b, c} of vertices admits k edge disjoint
{a,b, c}-trees (that is, f3(k) < |BEE2 |, of. introduction): Performing induction
on k, we first reduce the problem to the case that every {a,b, c}-bridge of the
given graph G is binary, just as in the proof of Theorem 4; if V(G) = {a,b,c}
then the statement follows by a result on spanning trees from [6], and oth-
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erwise there is a further vertex x with edges za, zb, xc which constitute a bi-
nary {a,b, c}-bridge B and, at the same time, an {a, b, c}-tree. By Theorem 5,
G—-E(B)is (LL;?’J — 1)-edge-connected and hence L%}edge—connected;
so there are k — 1 edge disjoint {a, b, c}-trees in G by induction, and they form,
together with B, the desired family of k edge disjoint {a, b, c}-trees of G.

It seems to be a difficult problem to generalize Theorem 5 to the deletion of
more than one A-bridge. It could be possible that under the assumptions that
A is minimally k-edge-connected in G and that there are only binary A-bridges,
A remains (k — ¢)-edge-connected in any graph obtained from G by removing
the edges of any ¢ A-bridges. For k = 2 this is true by Theorem 5, but it is not
clear why for some 3-edge-connected set A there cannot exist B, B’ such that
A is disconnected in G — (E(B) U E(B’)). The case £ = k — 1 is particularly
interesting, as it would imply that the edge connectivity of A is inherited to the
“bridge hypergraph” if all bridges are binary:

Problem 1 Is it true that if A is a minimally k-edge-connected set of vertices
in some graph G and every A-bridge is a binary tree then the hypergraph H on
A whose edges are formed by the family of sets of endvertices of A-bridges in G
is k-edge-connected?

An affirmative answer to Problem 1 would yield an alternative proof for Theorem
4: After reduction to the case that A is minimally & - (¢ + 2)-edge-connected in
G and every A-bridge is binary, as in the present proof of Theorem 4, we would
know that H as in Problem 1 is k - (£ + 2)-edge-connected and every edge of H
had at most £ + 2 vertices. By another result of [3], H is k-partition-connected
and thus admits k (1-partition-) connected spanning subhypergraphs, which
easily yield the desired family of k edge disjoint A-trees in G.
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