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Abstract

We prove a general duality theorem for width parameters in combinato-
rial structures such as graphs and matroids. It implies the classical such
theorems for path-width, tree-width, branch-width and rank-width, and
gives rise to new width parameters with associated duality theorems. The
dense substructures witnessing large width are presented in a unified way
akin to tangles, as orientations of separation systems satisfying certain
consistency axioms.

1 Introduction

There are a number of theorems in the structure theory of sparse graphs that
assert a duality between certain ‘dense objects’ and an overall tree structure.
For example, a graph has small tree-width if and only if it contains no large-
order bramble. The aim of this paper is to prove one such theorem in a general
setting, a theorem that will imply all the classical duality theorems as special
cases, but with a unified and simpler proof. Our theory will give rise to new
width parameters as well, with dual ‘dense objects’, and conversely provide dual
tree-like structures for notions of dense objects that have been considered before
but for which no duality theorems were known.

Amini, Mazoit, Nisse, and Thomassé [1] have also established a theory of
dualities of width parameters, which pursues (and achieves) a similar aim. Our
theory di↵ers from theirs in two respects: we allow more general separations of a
given ground set than just partitions, including ordinary separations of graphs;
and our ‘dense objects’ are modelled after tangles, while theirs are modelled
on brambles. Hence while our main results can both be used to deduce those
classical duality theorems for width parameters, they di↵er in substance. And
so do their corollaries for the various width parameters, even if they imply the
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same classical results. Moreover, while the main results of [1] can easily be
deduced from ours (see Section 5.7), the converse seems less clear. And finally,
our theory gives rise to duality theorems for new width parameters that can
only be expressed in our setup.

All we need in our set-up is that we have a notion of ‘separation’ for the
combinatorial structure to be considered, by which we mean an ordered pair
(A,B) of subsets of some ground set V such that A [ B = V.1 For example,
V might be the vertex set of a graph or the ground set of a matroid, and
‘separations’ would be defined as is usual for graphs and matroids. In order to
apply our theorem we may need in addition that there is a submodular function
defined on these separations, such as their order, but our main result can be
stated without such an assumption.

Our unified treatment of ‘dense objects’ is gleaned from the notion of tangles
in graph minor theory [18], or of ultrafilters in set theory. The idea is as follows.
Consider any set S of separations of a given graph or matroid. In order to
deserve its name with respect to S, we expect of a ‘dense object’ that for every
separation in S it lies on one side but not the other. For example, if S is the
set of all separations (A,B) of a graph G such that |A \B| < k, then every Kn

minor of G with n � k will have a branch set in ArB or in BrA, but not both.
Our dense object D therefore orients every separation in S by choosing exactly
one of the two ordered pairs (A,B), (B,A) in such cases,2 and our paradigm is
that this orientation of S is the only information about D that we ever use. We
formalize this by defining ‘dense objects’ as certain orientations of S.

To deserve their name, ‘dense objects’ cannot be arbitrary orientations of S
but have to satisfy some consistency rules. For example, if in a graph G we have
two separations (A,B), (C,D) and their inverses in S, and A ✓ C and B ◆ D,
then D should not orient {A,B} towards A by selecting (B,A) and {C,D}
towards D by selecting (C,D). While this rule will be common to all the ‘dense
objects’ we shall consider, there may be further rules depending on the type of
object, so that we can tell them apart. These additional rules will stipulate that
the orientation of S given by a dense object D must not contain certain subsets
of S, such as the set {(B,A), (C,D)} in the above example. Thus, each type of
dense object will be specified by a collection F of ‘forbidden’ subsets of S.

The tree-like structure that is dual to a dense object D, i.e., which will exist
in a graph or matroid if and only if it contains no instance of D, will be defined
by this same collection F of separation sets forbidden in D. It will typically
come as a subset of S that is nested, and which thus cuts up the underlying
set in a tree-like way, and the ‘stars of separations’ by which this tree branches
will be required to lie in F . Tangles, for example, are defined in this way: with
F the set of all triples (A1, B1), (A2, B2), (A3, B3) of separations whose ‘small’
sides A1, A2, A3 cover the entire graph or matroid, and branch decompositions,
their dual objects, as nested sets of separations branching at precisely such
triples.

The following familiar dualities between dense objects and tree structures
1In fact, we need even less. It would be enough to consider instead of ‘separations’ any

poset with an involution that commutes with its ordering, just as the ordering of separations
introduced below satisfies (A, B)  (C, D) , (B, A) � (D, C). It is only for the sake of
readability that we are writing this paper in terms of separations, as readers are likely to
have graphs or matroids in mind.

2Our notational convention will be that we think of (A, B) as pointing towards B.
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can be captured in this way, and their duality theorems will follow from our
theorem. For graphs, we can capture path-decompositions and blockages [2],
tree-decompositions and brambles [19], branch-decompositions and tangles of
graphs [18]. For matroids, our framework captures branch-decompositions and
tangles [18, 10], as well as matroid tree-decompositions [11] and their dual ob-
jects proposed by Amini, Mazoit, Nisse, and Thomassé [1]. Our framework also
captures branch-decompositions and tangles of symmetric submodular func-
tions [18, 10], which includes branch-width of graphs and matroids, carving-
width of graphs [20], and rank-width of graphs [16].

Since blockages and brambles are not defined in terms of orientations of sets
of separations, the duality theorems we obtain when we specify S and F to
capture path- or tree-width (of graphs or matroids) will di↵er from their known
duality theorems. But they will be easily interderivable with these. Since S and
F can be chosen in many other ways too, our results also imply dualities for
new width parameters.

Our unifying duality theorem will come in three flavours: as weak , strong,
and general duality. Our weak duality theorem, presented in Section 3, will be
easy to prove but have no direct applications. It will be used as a stepping stone
for both the strong duality theorem and the general duality theorem, our two
main results. The strong duality theorem, presented in Section 4, will imply all
the classical results mentioned earlier. The general duality theorem, presented
in Part II of this paper [9], will be applicable to a much wider set of notions
of dense objects, including profiles [13, 4, 5] and k-blocks [7, 6]. But the tree-
like structure witnessing their exclusion will be less specific than in the strong
theorem, so these two theorems are independent.

2 Terminology and basic facts

A separation of a set V is a pair (A,B) of subsets such that A[B = V . Its in-
verse is the separation (B,A). A set S of separations is symmetric if (B,A) 2 S
whenever (A,B) 2 S, and antisymmetric if (B,A) /2 S whenever (A,B) 2 S.
A symmetric set of separations of a set V is a separation system on V .

The separation (A,B) is proper if A,B 6= V , and improper otherwise. The
separations of V are partially ordered by

(A,B)  (C,D) :, A ✓ C and B ◆ D.

Note that this is equivalent to (D,C)  (B,A), and that (A,B) is proper if and
only if (A,B) and (B,A) are incomparable with respect to .

Informally, we think of (A,B) as pointing towards B and away from A.
Similarly, if (A,B)  (C,D), then (A,B) points towards (C,D) and (D,C),
while (C,D) points away from (A,B) and (B,A).

A set S of separations of V is nested if each of them is comparable with
every other or its inverse. Thus, two nested separations are either comparable,
or point towards each other, or point away from each other. Two separations
that are not nested are said to cross.

A set of separations is a star if they point towards each other (Fig. 1). Thus,
S is a star if (A,B)  (D,C) for distinct (A,B), (C,D) 2 S. In particular, stars
are nested. They need not be antisymmetric, but if not they contain an inverse
pair (A,B), (B,A), then any other separation they contain must be improper.
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Figure 1: The separations (A,B), (C,D), (E,F ) form a 3-star

Let F ✓ 2S be a collection of sets of separations in S, and S� ✓ S. An
S-tree over F and rooted in S� is a pair (T,↵) of a tree T with at least one
edge and a function ↵ : ~E(T ) ! S from the set

~E(T ) := {(s, t) : {s, t} 2 E(T )}

of all orientations of edges of T satisfying the following:

(i) For each edge xy of T , if ↵(x, y) = (A,B) then ↵(y, x) = (B,A).
(ii) For each internal node t of T , the set {↵(s, t) : st 2 E(T )} is in F .
(iii) For each leaf s of T with neighbour t, say, ↵(s, t) 2 S�.

We say that the separation ↵(s, t) in (iii) is associated with, or simply at, the
leaf s. The separations at leaves are the leaf separations of (T,↵).

s
t

u v

C D

A B

Figure 2: An S-tree with (C,D) = ↵(s, t)  ↵(u, v) = (A,B)

An important example are the S-trees over stars: the S-trees over some F
all whose elements are stars of separations. In such an S-tree (T,↵) the map ↵
preserves the natural partial ordering on ~E(T ) defined by letting (s, t)  (u, v) if
the unique {s, t}–{u, v} path in T starts at t and ends at u. Indeed, the images
under ↵ of the oriented stars

St = {(s, t) : t an internal node of T},

which by (ii) are sets in F , are then stars of separations. This means precisely
that ↵ preserves the partial ordering on the sets St as induced by ~E(T ), which
in turn easily implies that ↵ preserves the ordering on all of ~E(T ).

Proposition 2.1. If (T,↵) is an S-tree over stars and ↵(s, t) = (A,B) =
↵(s0, t0) for distinct leaves s, s0 2 T , then (A,B) is improper with B = V .
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Proof. As s and s0 are leaves, we have (s, t)  (t0, s0) in the partial ordering
of ~E(T ). Hence (A,B) = ↵(s, t)  ↵(t0, s0) = (B,A), and thus A ✓ B. As
A [B = V by definition of separation, this implies B = V .

Recall that stars need not, by definition, be antisymmetric: a star may
contain both (A,B) and its inverse (B,A). While it is important for our proofs
to allow this, we can always contract an S-tree (T,↵) over a collection F of
stars to an S-tree (T 0,↵0) over the subcollection F 0 ✓ F of all antisymmetric
stars in F whose leaf separations are among those for (T,↵). Indeed, if T has
a node t such that ↵(St) is not antisymmetric, then t has neighbours s1, s2

such that ↵(s1, t) = (A,B) = ↵(t, s2) for some (A,B) 2 S. Let T 0 be obtained
from T by contracting both the edge ts2 and the component of T � s1t � ts2

containing t, and let ↵0 := ↵ � ~E(T 0). Then (T 0,↵0) is again an S-tree over F .
Since we can do this whenever some St maps to a star of separations that is not
antisymmetric, but only finitely often, we must arrive at an S-tree over F 0.

Let S be a separation system. An orientation of S is a subset O ✓ S that
contains, for every (A,B) 2 S, exactly one of (A,B) and (B,A). A partial
orientation of S is an orientation of some symmetric subset of S.

A set P of separations is consistent if it contains no two separations pointing
away from each other: if (C,D)  (A,B) 2 P implies (D,C) /2 P .3 Note that
this does not imply (C,D) 2 P : it may also happen that P contains neither
(C,D) nor (D,C). Note that consistent sets of separations are antisymmetric.

If P ✓ S is consistent, it is clearly a partial orientation of S. Conversely,
if P is an orientation of all of S, it is consistent if and only if it is closed
down in the partial ordering of S, i.e., if and only if (C,D) 2 P whenever
(C,D)  (A,B) 2 P and (C,D) 2 S.

Whenever P ✓ O ✓ S we say that P extends to O, and O extends P .

Proposition 2.2. Every consistent partial orientation of a separation system S
extends to a consistent orientation of S.

Proof. Let P be a consistent orientation of a symmetric subset S0 of S. We apply
induction on |S r S0|. For the induction step pick a separation (A,B) 2 S rS0.
Suppose that neither P [ {(A,B)} nor P [ {(B,A)} is consistent. Then there
exist (C1,D1), (C2,D2) 2 P such that (B,A)  (C1,D1) and (A,B)  (C2,D2).
But then (D1, C1)  (A,B)  (C2,D2), contradicting our assumption that P is
consistent.

3 Weak duality

Our paradigm in this paper is to capture the notion of a ‘dense object’ D in
a structure on a set V by orientations of suitable separation systems S on V .
Here, ‘suitable’ means that for every separation in S the object D should ‘lie on’
one of its sides but not the other, and S should ideally contain all separations
of V for which this is the case.

3It is a good idea to work with this formal definition of consistency, since the more intuitive
notion of ‘pointing away from each other’ can be counterintuitive. For example, we shall need
that no consistent set of separations of V contains a separation of the form (V, A); this follows
readily from the formal definition, as (A, V )  (V, A), but is less obvious from the informal.
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If D was a concrete subset X of V , for example, such as a set spanning a
large complete subgraph in a graph, there would then be a unique orientation
O of S that describes D: the set {(A,B) 2 S : X ✓ B}. What makes the
orientations paradigm so attractive, however, is that it is more general than
this. For example, a large grid H in a graph G defines a high-order tangle T –
for every small-order separation of G, most of H will lie on one side but not the
other – yet the intersection of the ‘large sides’ B of all the oriented separations
(A,B) 2 T will be empty. What the existence of a large grid H in G does imply,
however, is that G has no three low-order separations (Ai, Bi) (i = 1, 2, 3) such
that H ✓ G[A1] [ G[A2] [ G[A3]. So Robertson and Seymour [18] chose this
latter property as the defining axiom for a tangle.

In this spirit, we seek to define our ‘dense objects’ as orientations of separa-
tion systems S that do not contain certain subsets of S. We say that a partial
orientation P of a separation system S avoids F ✓ 2S if P has no subset in F ,
i.e., if 2P \ F = ;.

Theorem 3.1 (Weak Duality Theorem). Let S be a separation system of a
set V , and let S� ✓ S contain every separation of the form (A,V ) 2 S. Let F
be a set of stars in S. Then exactly one of the following holds:

(i) There exists an S-tree over F rooted in S�.
(ii) There exists an F-avoiding orientation of S extending S�.

For the easy direction that (i) and (ii) cannot both hold, we do not need
the assumption that F consists of stars, nor that S� contains all the separa-
tions (A,V ):

Lemma 3.2. Let S be a separation system, S� ✓ S a partial orientation of S,
and F ✓ 2S. If there exists an S-tree over F rooted in S�, then no orientation
of S extending S� avoids F .

Proof. Let (T,↵) be an S-tree over F rooted in S�, and let O be an orientation
of S that extends S�. Then ↵ maps for every edge of T exactly one of its
orientations to a separation in O. Let t be a sink in the resulting orientation
of T ; then St = {↵(s, t) : st 2 E(T )} ✓ O. Since leaf separations lie in S� ✓ O,
their inverses do not lie in O, so t is not a leaf. Hence St 2 F , so O does not
avoid F .

Proof of Theorem 3.1. By Lemma 3.2, at most one of (i) and (ii) holds. We now
show that at least one of them holds. If S� contains a separation (X,Y ) together
with its inverse (Y,X), then (T,↵) with T = K2 and im↵ = {(X,Y ), (Y,X)}
is an S-tree satisfying (i). So we may assume that S� is a partial orientation
of S. We apply induction on |S|� 2 |S�| to show that (i) or (ii) holds.

If |S| = 2 |S�|, then S� itself is an orientation of S extending S�. If (ii)
fails, S� has a subset {(A1, B1), . . . , (An, Bn)} 2 F . Let T be an n-star with
centre t and leaves s1, . . . , sn. Let ↵(si, t) = (Ai, Bi) and ↵(t, si) = (Bi, Ai), for
i = 1, . . . , n. Then (T,↵) satisfies (i).

Thus we may assume that S has a separation (X,Y ) such that neither (X,Y )
nor (Y,X) is in S�. Our assumption about S� implies that (X,Y ) is a proper
separation. Let S�

X = S� [ {(Y,X)} and S�
Y = S� [ {(X,Y )}. Since any

orientation of S extending S�
X or S�

Y also extends S�, we may assume that
no such orientation avoids F . By the induction hypothesis, there are S-trees
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(TX , ⇠) and (TY , �) over F , rooted in S�
X and S�

Y , respectively. Unless one of
these is in fact rooted in S�, implying (i), TX has a leaf x, with neighbour x0

say, such that ⇠(x, x0) = (Y,X), and TY has a leaf y, with neighbour y0 say, such
that �(y, y0) = (X,Y ). By Proposition 2.1, x and y are the only such leaves in
their trees.

Let T be the tree obtained from the disjoint union of TX � x and TY � y by
joining x0 to y0. Let ↵ : ~E(T ) ! S map (x0, y0) to (X,Y ) and (y0, x0) to (Y,X)
and otherwise extend ⇠ and �. Then ⇠(x0, x) = ↵(x0, y0) = �(y, y0), so ↵ maps
the oriented stars at x0 and y0 to the same stars of separations in S as ⇠ and �
did. These lie in F , so (T,↵) is an S-tree over F rooted in S�.

Theorem 3.1, alas, has a serious fault: there are few, if any, sets S and
F ✓ 2S such that F consists of stars in S and the F-avoiding orientations of S
capture an interesting notion of ‘dense objects’. The reason for this is that we
are not requiring these orientations O to be consistent: we allow that O contains
separations (D,C) and (A,B) when (C,D)  (A,B), which will not usually be
the case when O is induced by a meaningful dense object in the way discussed
earlier.

So what happens if we strengthen (ii) so as to ask for a consistent orientation
of S? The first time the proof breaks down is at the induction start: we now
also have to ask that S� be consistent. As such, this is no big restriction: the
separations in S� are meant to be small, so it is natural to require even that
S� be closed down in (S,) (which is stronger than consistency).

But now we have a problem at the induction step: we have to add not only
(X,Y ) or (Y,X) to S�, but their entire down-closures

d(X,Y )eS := { (U,W ) 2 S : (U,W )  (X,Y ) }

and d(Y,X)eS in S. This, then, spawns more problems: now TX and TY can
have many leaf separations not in S�, not just (Y,X) and (X,Y ). Even if each
of these occurs only once (which can fail only if they are improper), there is
then no obvious way to merge TX and TY into a single S-tree over S�.

We shall deal with this problem in the next section, in a fairly radical way.
We shall aim to ‘shift’ the separations in the image of ⇠ to X, and the separations
in the image of � to Y , to turn (T, ⇠) into an S-tree essentially on X and (T, �)
into an S-tree essentially on Y . The only leaf separation of the new S-tree for X
that is not in S� will be (Y,X), and the only leaf separation of the new S-tree
for Y that is not in S� will be (X,Y ). We can then merge these two S-trees
into an S-tree rooted in S�.

In order for this approach to work, we shall have to impose some conditions
on S and F . These conditions are quite stringent, but they are so natural that
all choices of S and F needed to capture the classical notions of ‘dense objects’
such as tangles and brambles will satisfy them.

4 Strong duality

Let (X,Y )  (U,W ) be elements of a set S of separations of a set V . Assume
that U 6= V , and that (W,U) is associated with a leaf w of an S-tree (T,↵) over
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some set F ✓ 2S of stars.4 Our aim is to ‘shift’ (T,↵) to a new S-tree (T,↵0)
based on the same tree T , by shifting the separations in the image of ↵ over to X.

Given a separation (A,B)  (U,W ), let us define (Fig. 3, left)

f#(U,W )
(X,Y ) (A,B) := (A \X,B [ Y ) and f#(U,W )

(X,Y ) (B,A) := (B [ Y,A \X).

This defines a shifting map f#(U,W )
(X,Y ) on the set S(U,W ) of separations (A,B) 

(U,W ) and their inverses. Since (W,U) is a leaf separation of (T,↵) and F
consists of stars, the image of ↵ lies in S(U,W ) (Fig. 3, right). Hence the con-
catenation

↵0 := f#(U,W )
(X,Y ) � ↵

is well defined. However it is not clear for now whether ↵0 takes all its images
in S.

U W

A B

e

X Y

U
W

A

B

A

B

Figure 3: Shifting ↵(~e) = (A,B) to ↵0(~e) = (A0, B0)

What is immediate, however, is that f#(U,W )
(X,Y ) maps stars to stars:

Lemma 4.1. The map f#(U,W )
(X,Y ) preserves the ordering  of separations.

Proof. Consider two separations (A,B), (C,D)  (U,W ). If (A,B)  (C,D)
then A ✓ C and B ◆ D, and hence also A \X ✓ C \X and B [ Y ◆ D [ Y .
Thus, f#(U,W )

(X,Y ) (A,B)  f#(U,W )
(X,Y ) (C,D).

If (A,B)  (D,C) the assertion is trivial, since f#(U,W )
(X,Y ) decreases A and C

while increasing B and D. Up to re-naming, this covers all cases to consider.

As remarked before, Lemma 4.1 implies that f#(U,W )
(X,Y ) maps stars to stars.5

It also implies that all leaf separations of (T,↵), other than (W,U), get smaller
in the transition to ↵0.6 Indeed, if ↵(s, t) = (A,B) with s 6= w a leaf of T , then
(A,B)  (U,W ) and hence

f#(U,W )
(X,Y ) (A,B) = (A \X,B [ Y )  (A,B).

It remains to ensure that ↵0 takes its image in S if ↵ does. The following
condition on S will ensure the existence of a separation (X,Y ) for which this is
the case. Let us say that (X,Y ) 2 S is linked to (U,W ) 2 S if (X,Y )  (U,W )
and

(A \X,B [ Y ) 2 S

4Thus, (W, U) 2 d(Y, X)e, and in the context of the last section T would be TX .
5This will help us show that (T, ↵0) is over F if (T, ↵) is.
6This will help us show that (T, ↵0) is rooted in S� if (T, ↵) is.
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for all (A,B) 2 S with (A,B)  (U,W ). Let us call S separable if for every pair
(W 0, U 0)  (U,W ) of separations in S there exists (X,Y ) 2 S such that (X,Y )
is linked to (U,W ) and (Y,X) is linked to (U 0,W 0).

Finally, we need a condition on F to ensure that the shifts of stars that
occur as images under ↵ of oriented stars at nodes of T are not only again stars
but are also again in F .5 Let us say that a separation (X,Y ) 2 S is F-linked
to (U,W ) 2 S with U 6= V if (X,Y ) is linked to (U,W ) and the image under
f #(U,W )

(X,Y ) of any star S0 ✓ S(U,W ) in F that contains a separation (A,B) with
(B,A)  (U,W ) is again in F . We say that S is F-separable if for every pair
(W 0, U 0)  (U,W ) of separations in S, with U,U 0 6= V , there exists (X,Y ) 2 S
such that (X,Y ) is F-linked to (U,W ) and (Y,X) is F-linked to (U 0,W 0). And
a set F of stars in S is closed under shifting if whenever (X,Y ) 2 S is linked to
(U,W ) 2 S with U 6= V it is even F-linked to (U,W ).

The following observation is immediate from the definitions:

Lemma 4.2. If S is separable and F is closed under shifting, then S is F-
separable.

In Section 5 we shall see that for all sets F describing classical ‘dense objects’,
such as tangles and brambles (as well as many others), the usual separation
systems S are F-separable. In many cases, F will even be closed under shifting,
in which case we will simply prove this stronger property.

We now have all the ingredients needed to shift an S-tree:

Lemma 4.3. Let F ✓ 2S be a set of stars, let S� ✓ S be closed down in S, and
let (T,↵) be an S-tree over F rooted in S�. Let (W,U) be associated with a leaf
w of T , where U 6= V , let (X,Y ) be a proper separation in S that is F-linked
to (U,W ), and let ↵0 := f#(U,W )

(X,Y ) � ↵. Then (T,↵0) is an S-tree over F rooted
in S� [ {(Y,X)}, in which (Y,X) is associated with w but with no other leaf
of T , and (W,U) is not a leaf separation unless (W,U) = (Y,X).

Proof. Since F consists of stars, the map ↵ preserves the natural ordering
on ~E(T ). In this ordering, every edge tt0 of T has an orientation (t, t0)  (u,w),
where u is the unique neighbour of the leaf w. Since ↵(u,w) = (U,W ), this
means that ↵ maps ~E(T ) to S(U,W ). As f#(U,W )

(X,Y ) is defined on this set, the map
↵0 is well defined. And its image lies in S, because (X,Y ) is linked to (U,W ).

From Lemma 4.1 we know that f#(U,W )
(X,Y ) maps stars to stars. Since (X,Y ) is

F-linked to (U,W ), it maps stars from F that are images under ↵ of oriented
stars at nodes of T to F . Hence (T,↵0), like (T,↵), is an S-tree over F .

In (T,↵0), the separation at the leaf w is ↵0(w, u) = f#(U,W )
(X,Y ) (W,U) = (Y,X).

Now consider a leaf s 6= w of T , adjacent to t say, with ↵(s, t) = (A,B) 2 S�.
As (s, t)  (u,w) in the natural ordering on ~E(T ) we have (A,B)  (U,W ), so

↵0(s, t) = f#(U,W )
(X,Y ) (A,B) = (A \X,B [ Y )  (A,B).

As S� is closed down in S, this means that ↵0(s, t) 2 S�. But it also means
that ↵0(s, t) 6= (Y,X), since (A \ X,B [ Y ) = (Y,X) would imply Y ✓ X,
contradicting our assumption that (X,Y ) is a proper separation. Thus, w is
the unique leaf of T associated with (Y,X) under ↵0, and (T,↵0) is rooted
in S� [ {(Y,X)}.

9



Finally, if ↵0(s, t) = (W,U) then U = B[Y ◆ Y while U ◆ X by assumption,
giving U = V contrary to our assumption.

We can now strengthen our weak duality theorem so as to give consistent
orientations, provided that S is F-separable and S� is closed down in S.

Theorem 4.4 (Strong Duality Theorem). Let S be a separation system of a
set V , and let F ✓ 2S be a set of stars. Let S� be a down-closed subset of S
containing all its separations of the form (A,V ). If S is F-separable, then
exactly one of the following holds:

(i) There exists an S-tree over F rooted in S�.

(ii) There exists a consistent F-avoiding orientation of S extending S�.

Proof. By Lemma 3.2 it su�ces to prove (i) assuming that (ii) fails. As in the
proof of Theorem 3.1 we may assume that S� is a partial orientation of S, and
apply induction on |S|�2 |S�|. At the induction start, S� orients all of S. Since
S� is a down-closed partial orientation, it is consistent, so our assumption that
(ii) fails means that S� has a subset in F . This defines an S-tree (T,↵) with T
a star as in the proof of Theorem 3.1, proving (i).

For the induction step, we now assume that S� does not orient all of S. So
there exist separations (W1, U1)  (U2,W2) in S r S�, possibly equal, whose
inverses are also not in S�. Let us choose these with (W1, U1) minimal and
(U2,W2) maximal. Note that U1, U2 6= V , by our assumption about S�.

Let S�
1 = S� [ {(W1, U1)} and S�

2 = S� [ {(W2, U2)}. To show that S�
1

is closed down in S, consider a separation (A,B) < (W1, U1) in S. By the
minimality of (W1, U1), either (A,B) or (B,A) is in S�. It cannot be (B,A),
because then also (U1,W1) < (B,A) would be in S� (which is closed down
in S by assumption), contrary to our choice of (W1, U1). Similarly, the maximal
choice of (U2,W2) implies that S�

2 is closed down in S.
Since any orientation extending S�

i also extends S�, our assumption that
(ii) fails implies for i = 1, 2 that no consistent F-avoiding orientation of S
extends S�

i . By the induction hypothesis, there exists an S-tree (Ti,↵i) over F
rooted in S�

i . We may assume that (Ti,↵i) is not rooted in S�, so Ti has a leaf
wi such that ↵i(wi, ui) = (Wi, Ui), where ui is the unique neighbour of wi in Ti.

Since S is F-separable and (W1, U1)  (U2,W2), there exists (X1,X2) 2 S
such that (X1,X2) is F-linked to (U2,W2) and (X2,X1) is F-linked to (U1,W1).
Then (W1, U1)  (X1,X2)  (U2,W2). Our assumption that (W1, U1),
(W2, U2) /2 S� but S� is closed down in S thus implies that neither (X1,X2)
nor (X2,X1) lies in S�. Since S� contains every improper separation or its
inverse, this means that (X1,X2) is a proper separation. By Lemma 4.3, there
are S-trees (Ti,↵0i) over F rooted in S�

i [ {(Xi,X3�i)}, in which (Xi,X3�i) is
associated with wi but with no other leaf of Ti, and all other leaf separations
lie in S�.

Let T be the tree obtained from the disjoint union of T1 �w1 and T2 �w2

by joining u1 to u2. Let ↵ : ~E(T ) ! S map (u2, u1) to (X1,X2) and (u1, u2)
to (X2,X1), and otherwise extend the ↵0i. Then (T,↵) satisfies (i), as in the
proof of Theorem 3.1.
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5 Applications of strong duality

In this section we show that the separation systems usually considered for graphs
and matroids are all separable, and that the collections F needed to capture
‘dense objects’ such as tangles, brambles and blockages are closed under shifting.
This will make our strong duality theorem imply the classical duality theorems
for graphs and matroids. We also obtain some interesting new such theorems.

Let us call a separation system a universe if for any two of its separations
(A,B) and (C,D) it also contains (A \ C,B [D). For instance, the set of all
partitions of the ground set of a matroid is a universe, and so is the set of all
vertex separations of a graph (which does not normally include all its vertex
partitions).

We shall call a real function (A,B) 7! |A,B| on a universe U an order
function if it is symmetric and submodular, that is, if |A,B| = |B,A| and

|A \ C,B [D|+ |A [ C,B \D|  |A,B|+ |C,D|

for all (A,B), (C,D) 2 U . We then call |A,B| the order of the separation
(A,B). Given a universe U with an order function, our focus will often be on
the subsystem

Sk = {(A,B) 2 U : |A,B| < k}
for some positive integer k.

Lemma 5.1. Every such Sk is separable.

Proof. Given two separations (W 0, U 0)  (U,W ) in Sk, choose (X,Y ) 2 Sk of
minimum order with (W 0, U 0)  (X,Y )  (U,W ). We show that (X,Y ) is
linked to (U,W ); the proof that (Y,X) is linked to (U 0,W 0) is analogous.

Consider any (A,B) 2 Sk with (A,B)  (U,W ). By submodularity,

|A \X,B [ Y |+ |A [X,B \ Y |  |A,B|+ |X,Y | .

Notice that
(W 0, U 0)  (A [X,B \ Y )  (U,W ).

By the choice of (X,Y ) this implies |A [X,B \ Y | � |X,Y |. Hence

|A \X,B [ Y |  |A,B| < k,

and thus (A \X,B [ Y ) 2 Sk as desired.

For the remainder of this section, whenever we consider a graph G = (V,E)
we let U be its universe of vertex separations, the set of pairs (A,B) of vertex
sets A,B such that A [B = V and G has no edge between A r B and B r A.
We then take |A,B| := |A \B| as our order function for U , and put

S�
k :=

�
(A,B) 2 Sk : |A| < k

 
.

This is obviously closed down in Sk, and Sk is separable by Lemma 5.1.
We remark that any consistent orientation O of Sk must extend the subset

of S�
k consisting of its separations of the form (A,V ). This is because otherwise

O would contain (V,A), with (A,V )  (V,A) 2 O violating consistency.
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5.1 Branch-width and tangles of graphs

Robertson and Seymour [18] introduced branch-width and tangles for graphs,
and more generally hypergraphs. For the sake of readability we only treat
simple graphs here (no parallel edges or loops), but our results extend readily
to multigraphs and hypergraphs with the obvious adaptations.

Let G = (V,E) be a finite graph. A tangle of order k in G is (easily seen to
be equivalent to) an F-avoiding orientation of Sk extending S�

k for

F :=
�
{(A1, B1), (A2, B2), (A3, B3)} ✓ Sk : G[A1] [G[A2] [G[A3] = G

 
.

(The three separations (A1, B1), (A2, B2), (A3, B3) need not be distinct.) Notice
that any orientation of Sk that avoids this F is consistent, since for any pair
of separations (C,D)  (A,B) we have G[D] [ G[A] ◆ G[B] [ G[A] = G and
hence {(D,C), (A,B)} 2 F .

Since our duality theorems, so far, only work with F consisting of stars of
separations, let us consider the set F⇤ of those sets in F that are stars. Using
submodularity we can easily show that an F⇤-avoiding orientation of Sk in fact
avoids all of F – but only if we assume consistency:

Lemma 5.2. Every consistent F⇤-avoiding orientation O of Sk avoids F .

Proof. Suppose O has a subset S = {(A1, B1), (A2, B2), (A3, B3)} 2 F . We
show that we can replace one of its elements (Ai, Bi) with a smaller separation
(A0

i, B
0
i) in O so that the resulting set S0 ✓ O is again in F . This will contradict

the finiteness of G.
As O avoids F⇤, we know that S is not a star, so (A1, B1) 6 (B2, A2), say.

By submodularity, either (A1 \B2, B1 [A2) or (A2 \B1, B2 [A1) is in Sk. We
assume that (A0

1, B
0
1) := (A1 \ B2, B1 [ A2) 2 Sk; the other case is analogous.

Clearly, (A0
1, B

0
1)  (A1, B1) as well as (A0

1, B
0
1)  (B2, A2). By our assumption

of (A1, B1) 6 (B2, A2) we thus have (A0
1, B

0
2) < (A1, B1).

Since O is an orientation of Sk 3 (A0
1, B

0
1), its consistency and the fact that

(A0
1, B

0
1)  (A1, B1) 2 O imply (A0

1, B
0
1) 2 O. To complete the proof it remains

to show that S0 = {(A0
1, B

0
1), (A2, B2), (A3, B3)} 2 F . But any vertex or edge

of G[A1] that is not in G[A0
1] lies in G[A2], so this follows from the fact that

S 2 F .

Lemma 5.3. F⇤ is closed under shifting.

Proof. This is easy from the definitions. Informally, when we shift a star

{(A1, B1), (A2, B2), (A3, B3)} ✓ S(U,W )

with (B1, A1)  (U,W ), we replace Ai with Ai\X for i � 2 but A1 with A1 [ Y .
As any vertex or edge that is not in G[X] lies in G[Y ], this means thatS

i G[Ai] = G remains unchanged.

The following technical but easy lemma provides the link between our S-trees
and branch-decompositions as defined by Robertson and Seymour [18]:
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Lemma 5.4. For every integer k � 3,7a graph G has branch-width less than k
if and only if G has an Sk-tree over F⇤ rooted in S�

k .

Proof. Let us prove the forward implication first. We may assume that G has
no isolated vertices, because we can easily add a leaf in an Sk-tree corresponding
to an isolated vertex.

Suppose (T,L) is a branch-decomposition of width < k. For each edge e = st
of T , let Ts and Tt be the components of T � e containing s and t, respectively.
Let As,t and Bs,t be the sets of vertices incident with an edge in L�1(V (Ts))
and L�1(V (Tt)), respectively. Thus, Bs,t = At,s.

For all adjacent nodes st 2 T let ↵(s, t) := (As,t, Bs,t). Since G has no
isolated vertices these ↵(s, t) are separations, and since (T,L) has width < k
they lie in Sk. For each internal node t of T and its three neighbours s1, s2, s3,
every edge of G has both ends in one of the G[Asi,t], so

St := {↵(s1, t),↵(s2, t),↵(s3, t)} 2 F .

As Asi,t ✓ At,sj = Bsj ,t for all i 6= j, the set St is a star. This proves that
(T,↵) is an Sk-tree over F⇤. As k � 3, it is rooted in S�.

Now let us prove the converse. We may again assume that G has no isolated
vertex. Let (T,↵) be an Sk-tree over F⇤ rooted in S�

k . For each edge e of G,
let us orient the edges st of T towards t whenever ↵(s, t) = (A,B) is such that
B contains both ends of e. If e has its ends in A \B, then we choose arbitrary
orientation of st. As T has fewer edges then nodes, there exists a node t =: L(e)
such that every edge at t is oriented towards t.

Let us choose an Sk-tree (T,↵) and L : E(G) ! V (T ) so that the number of
leaves in L(E(G)) is maximized, and subject to this with |V (T )| minimum. We
claim that, for every edge e of G, the node t = L(e) is a leaf of T . Indeed, if not,
let us extend T to make L(e) a leaf. If t has degree 2, we attach a new leaf t0

to t and put ↵(t0, t) = (V (e), V (G)) and L(e) = t0, where V (e) denotes the set
of ends of e. If t has degree 3 then, by definition of F , there is a neighbour t0 of
t such that e 2 G[A] for (A,B) = ↵(t0, t). As t = L(e), this means that e has
both ends in A \B. Subdivide the edge tt0, attach a leaf t⇤ to the subdividing
vertex t00, put ↵(t0, t00) = ↵(t00, t) = (A,B) and ↵(t⇤, t00) = (V (e), V (G)), and
let L(e) = t⇤. In both cases, (T,↵) is still an Sk-tree over F⇤, rooted in S�

k .
By the minimality of |V (T )|, every leaf of T is in L(E(G)), since we could

otherwise delete it. Moreover, no node of t of T has degree 2, since contracting
an edge at t while keeping ↵ unchanged on the remaining edges would leave an
Sk-tree over F⇤. (Here we use that G has no isolated vertices, and that L(e) 6= t
for every edge e of G.) Hence L is a bijection from E(G) to the set of leaves
of T , and T is a ternary tree. Thus, (T,L) is a branch-decomposition of G,
clearly of width less than k.

We can now derive, and extend, the Robertson-Seymour [18] duality theorem
for tangles and branch-width:

7This restriction is made necessary by a quirk in the notion of branch-width. This is 2
for all non-trivial trees other than stars, but 1 for stars K1,n. For a clean duality theorem,
however, it should be 2 also for stars: every graph with at least one edge has a tangle of
order 2, because we can orient all separations in S2 towards a fixed edge. Similarly, the
branch-width of a disjoint union of edges is 0, but its tangle number is 2.

13



Theorem 5.5. The following are equivalent for finite graphs G 6= ; and k > 0:
(i) G has a tangle of order k.
(ii) Sk has an F-avoiding orientation extending S�

k .
(iii) Sk has a consistent F⇤-avoiding orientation extending S�

k .
(iv) G has no Sk-tree over F⇤ rooted in S�

k .
(v) G has branch-width at least k, or k  2 and G is a disjoint union of stars

and isolated vertices and has at least one edge.

Proof. If k = 1, then all statements are true for all G 6= ;. If k = 2, they are all
true if G has an edge, and all false if not. Assume now that k � 3.

(i)$(ii) is immediate from the definition of a tangle (as earlier).
(ii)!(iii) is immediate from the definition of F ; the converse is Lemma 5.2.
(iii)$(iv) is Theorem 4.4.
(iv)$(v) is Lemma 5.4.

5.2 Tree-width and brambles of graphs

We now apply our strong duality theorem to yield a duality theorem for tree-
width in graphs. Its dual ‘dense objects’ will be orientations of Sk, like tangles,
and thus di↵erent from brambles (or ‘screens’), the dual objects in the classical
tree-width duality theorem of Seymour and Thomas [19].

This latter theorem, which ours easily implies, says that a finite graph either
has a tree-decomposition of width less than k�1 or a bramble of order at least k,
but not both. The original proof of this theorem is as mysterious as the result
is beautiful. The shortest known proof is given in [8] (where we refer the reader
also for definitions), but it is hardly less mysterious. A more natural, if slightly
longer, proof was given recently by Mazoit [15]. The proof by our strong duality
theorem, as outlined below, is perhaps the most basic proof one can have.8

Consider a finite graph G = (V,E), with sets of vertex separations S�
k ✓ Sk

for some integer k > 0 as defined at the start of Section 5. Let

Fk :=
�

S ✓ Sk | S = {(Ai, Bi) : i = 0, . . . , n} is a star with
��Tn

i=0 Bi

�� < k
 
.

We have seen that Sk is separable (Lemma 5.1). To apply Theorem 4.4 we
thus only need the following lemma – whose proof contains the only bit of magic
now left in the tree-width duality theorem:

Lemma 5.6. Fk is closed under shifting.

Proof. Let (X,Y )  (U,W ) be separations in Sk such that (X,Y ) is linked
to (U,W ). Let

S =
�
(Ai, Bi) : i = 0, . . . , n

 
be a star in Fk \ S(U,W ), with (B0, A0)  (U,W ). Then

(Ai, Bi)  (B0, A0)  (U,W ) for all i � 1. (1)

We have to show that

S0 =
�
(A0

i, B
0
i) : i = 0, . . . , n

 
2 Fk

for (A0
i, B

0
i) := f#(U,W )

(X,Y ) (Ai, Bi).

8For example, we do not need Menger’s theorem, as all the other proofs do.
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From Lemma 4.1 we know that S0 is a star. Since (X,Y ) is linked to (U,W ),
we have S0 ✓ Sk by (1). It remains to show that

��Tn
i=0 B0

i

�� < k. The trick will
be to rewrite this intersection as the intersection of the two sides of a suitable
separation that we know to be in Sk.

By (1) we have (A0
0, B

0
0) = (A0[Y,B0\X), while (A0

i, B
0
i) = (Ai\X,Bi[Y )

for i � 1. Since the (Ai, Bi) are separations, i.e. in U , so is
�Sn

i=1 Ai,
Tn

i=1 Bi

�
.

As trivially (B0, V ) 2 U , this implies that, for B⇤ :=
Tn

i=1 Bi, also

⇣ n[
i=1

Ai [B0 ,
n\

i=1

Bi \ V
⌘

= (B0, B
⇤) 2 U .

Since S 2 Fk we have |B0 \B⇤| =
��Tn

i=0 Bi

�� < k, so (B0, B⇤) 2 Sk (Fig. 4). As

A1 ∪ . . ..
. . ∪ An An

Bn

A0

B0

B1 ∩ . . . ∩ Bn

X Y

U

WA0

A1

B0

B1

Figure 4: Shifting the separation (B0, B⇤)

also (B0, B⇤)  (U,W ) by (1), the fact that (X,Y ) is linked to (U,W ) therefore
implies that (B0 \X,B⇤ [ Y ) 2 Sk. But then

�� n\
i=0

B0
i

�� =
��(B0 \X) \

n\
i=1

(Bi [ Y )
�� = |B0 \X,B⇤ [ Y | < k ,

which means that S0 2 Fk.

What remains now is just easy translation work between our terminology
and the terms in which tree-width duality is traditionally cast.

Lemma 5.7. G has an Sk-tree (T,↵) over Fk rooted in S�
k if and only if it has

a tree-decomposition (T,V) of width less than k � 1.

Proof. Given any S-tree (T,↵) of G over a set F of stars , let V = (Vt)t2T be
defined by letting

Vt :=
T
{B : (A,B) = ↵(s, t), st 2 E(T )} ; (2)

it is easy to check [7] that (T,V) is a tree-decomposition of G with adhesion
sets Vt \ Vt0 = A \ B whenever (A,B) = ↵(t, t0). If F = Fk as earlier, we
have |Vt| < k at all interior nodes t 2 T . And if (T,↵) is rooted in S�

k , its leaf
separations (A,B) = ↵(s, t) satisfy |Vs| = |A| < k. Hence, in our case, (T,V)
has width less than k � 1.
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Conversely, given a tree-decomposition (T,V) with V = (Vt)t2T , say, define
↵ : ~E(T ) ! Sk as follows. We may assume that T has at least two nodes: if it has
only one, t say, we add another, t0, with Vt0 = Vt = V . Given t1t2 2 E(T ), let Ti

be the component of T � t1t2 containing ti, and put Ui :=
S

t2V (Ti)
Vt (i = 1, 2).

Then let ↵(t1, t2) := (U1, U2). One easily checks [8] that U1 \ U2 = Vt1 \ Vt2 ,
so ↵ takes its values in Sk if (T,V) has width < k� 1. Moreover, every part Vt

satisfies (2), so if (T,V) has width < k � 1 then (T,↵) is over Fk and rooted
in S�

k .

The translation between orientations of Sk and brambles in a graph G is
more interesting. Before the notion of a bramble was introduced in [19] (under
the name of ‘screen’), Robertson and Seymour had looked for an object dual to
small tree-width that was more akin to our orientations of Sk: maps � assigning
to every set X of fewer than k vertices one component of G�X. The question
was how to make these choices consistent, so that they would define the desired
‘dense object’ dual to small tree-width. The obvious consistency requirement,
that �(Y ) ✓ �(X) whenever X ✓ Y , is easily seen to be too weak, while asking
that �(X)\�(Y ) 6= ; for all X,Y turned out to be too strong. In [19], Seymour
and Thomas then found a requirement that worked: that any two such sets,
�(X) and �(Y ), should touch: that either they share a vertex or G has an edge
between them. Such maps � are now called havens, and it is easy to show that
G admits a haven of order k (one defined on all sets X of less than k vertices)
if and only if G has a bramble of order at least k.

The notion of ‘touching’ was perhaps elusive because it appeals directly
to the structure of G, its edges: it is not be phrased purely in terms of set
containment. It turns out, however, that it can be phrased in such terms after
all, as the consistency of orientations of Sk:

Lemma 5.8. G has a bramble of order at least k if and only if Sk has a con-
sistent Fk-avoiding orientation extending S�

k .

Proof. Let B be a bramble of order at least k. For every (A,B) 2 Sk, since
A\B is too small to cover B but every two sets in B touch and are connected,
exactly one of the sets A r B and B r A contains an element of B. Thus,

O = { (A,B) 2 Sk : B r A contains an element of B }

is an orientation of Sk; it is clearly consistent and extends S�
k .

To show that O avoids Fk, let S = {(A1, B1), . . . , (An, Bn)} 2 Fk be given.
Then

��Tn
i=1 Bi

�� < k, so some C 2 B avoids this set and hence lies in the union
of the sets Ai r Bi. But these sets are disjoint, since S is a star. Hence C lies
in one of them, A1 r B1 say, putting (B1, A1) in O. But then (A1, B1) /2 O, so
S 6✓ O as claimed.

Conversely, let O be a consistent Fk-avoiding orientation of Sk extending S�
k .

We shall define a bramble B containing for every set X of fewer than k vertices
exactly one component of G�X, and no other sets. Such a bramble will have
order at least k, since no such set X covers it.

Given X, let C1, . . . , Cn be the vertex sets of the components of G � X.
Consider the separations (Ai, Bi) with Ai = Ci[N(Ci) and Bi = V rCi. Since

SX := { (Ai, Bi) : i = 1, . . . , n }
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is a star in Fk, not all the (Ai, Bi) lie in O. So (Bi, Ai) 2 O for some i, and
since O is consistent this i is unique. Let us make Ci an element of B.

It remains to show that every two sets in B touch. Given C,C0 2 B, there are
sets X and X 0 such that SX contains a separation (A,B) with A = C [N(C)
and (B,A) 2 O, and likewise for C0. If C and C0 do not touch, then C0 ✓ B rA
and hence A0 ✓ B (Fig. 5), and similarly A ✓ B0. Hence (A,B)  (B0, A0) 2 O
but also (B,A) 2 O, contradicting the consistency of O.

B ∩ B

N(C) N(C )

A B = C C = A B

Figure 5: If C,C0 do not touch, then (B,A) and (B0, A0) are inconsistent.

We can now prove, and extend, the tree-width duality theorem of Seymour
and Thomas [19]:

Theorem 5.9. The following are equivalent for all finite graphs G and k > 0:

(i) G has a bramble of order at least k.
(ii) Sk has a consistent Fk-avoiding orientation extending S�

k .
(iii) G has no Sk-tree over Fk rooted in S�

k .
(iv) G has tree-width at least k � 1.

Proof. (i)$(ii) is Lemma 5.8.
(ii)$(iii) holds by Lemma 5.6 and Theorem 4.4.
(iii)$(iv) is Lemma 5.7.

5.3 Path-width and blockages of graphs

A path-decomposition of a graph G is a tree-decomposition of G whose de-
composition tree is a path. The path-width of G is the least width of such a
tree-decomposition. Since the Sk-trees in Theorem 5.9 are just another descrip-
tion of tree-decompositions of width < k� 1, its equivalence of (i), (ii) and (iii)
immediately yields a duality theorem for path-width if we replace Fk with

F (2)
k :=

�
S ✓ Sk | S = {(A1, B1), (A2, B2)} is a star with

��B1 \B2

�� < k
 
,

its subset of stars of order 2.
Instead of the brambles in Theorem 5.9 (i), Bienstock, Robertson, Seymour

and Thomas [2] propose a more tangle-like kind of dense object dual to path-
width which they call ‘blockages’. They show that G has path-width at least
k�1 if and only it contains a blockage of order k�1 (see below for definitions).9
In this section we deduce their result from our strong duality theorem.

9They go on to show that any graph with a blockage of order k�1, and hence every graph
of path-width at least k� 1, contains every forest of order k as a minor – a corollary perhaps
better known than their path-width duality theorem as such.
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Given a set X of vertices in G = (V,E), let us write @(X) for the set of
vertices in X that have a neighbour outside X. A blockage of order k � 1,
according to [2], is a collection B of sets X ✓ V such that

(B1) |@(X)| < k for all X 2 B;
(B2) X 0 2 B whenever X 0 ✓ X 2 B and |@(X 0)| < k;
(B3) if (X1,X2) is a separation of G and |X1 \X2| < k, then B contains exactly

one of X1, X2.

To deduce the duality theorem of [2] from our strong duality theorem, we
just need to translate blockages into orientations of Sk:

Theorem 5.10. The following are equivalent for all finite graphs G and k > 0:
(i) G has a blockage of order k � 1.

(ii) Sk has a consistent F (2)
k -avoiding orientation extending S�

k .

(iii) G has no Sk-tree over F (2)
k rooted in S�

k .
(iv) G has path-width at least k � 1.

Proof. Since F (2)
k is just the restriction of the Fk from Section 5.2 to stars with

two separations, it is closed under shifting by Lemma 5.6. By Lemmas 5.1
and 4.2 this implies that Sk is F (2)

k -separable. Theorem 4.4, therefore, yields
the equivalence of (ii) and (iii), which is equivalent to (iv) by Lemma 5.7.

(i)!(ii): Suppose that G has a blockage B of order k�1. By (B2) and (B3),

O = { (X,Y ) 2 Sk : X 2 B }

is a consistent orientation of Sk.
For a proof that O extends S�

k it su�ces to show that B contains every set X
of order < k. Consider the separation (X,V ) 2 Sk. If V 2 B, then also X 2 B
by (B2), contradicting (B3). Hence V /2 B, and thus X 2 B by (B3).

It remains to show that O avoids F (2)
k . Given {(A1, B1), (A2, B2)} 2 F (2)

k

suppose that (A1, B1) 2 O. As |B1\B2| < k by definition of F (2)
k , the separation

(B1, B2) lies in Sk. We now use (B3) to deduce from our assumption of A1 2 B
that B1 /2 B, and hence B2 2 B, and hence A2 /2 B. Thus, (A2, B2) /2 O.

(ii)!(i): Let O be a consistent F (2)
k -avoiding orientation of Sk extending S�

k .
We claim that

B := {X : (X,Y ) 2 O }
is a blockage of order k � 1. Clearly, B satisfies (B1).

Let (X1,X2) be as in (B3). Then (X1,X2) 2 Sk, so (X1,X2) or its inverse
lies in O; say (X1,X2) 2 O. Then X1 2 B. If also X2 2 B, there exists Y2

such that (X2, Y2) 2 O. Then (X1 \ Y2,X2) is a separation of order < k. As
(X1 \ Y2,X2)  (X1,X2) 2 O and O is consistent, we have (X1 \ Y2,X2) 2 O.
Then {(X1 \ Y2,X2), (X2, Y2)} is a star in F (2)

k , contradicting our assumption.
Given X 0 ✓ X 2 B as in (B2), with (X,Y ) 2 O say, let Y 0 := @(X 0)[(V rX 0)

and Z := @(X) [ (V r X). Then Z ✓ Y and hence |X \ Z|  |X \ Y | < k, so
(X,Z) 2 Sk. By (B3) we have Z /2 B and hence (Z,X) /2 O, so (X,Z) 2 O.
Since O is consistent and (X 0, Y 0)  (X,Z), we thus obtain (X 0, Y 0) 2 O and
hence X 0 2 B, as desired.
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5.4 Branch-width and tangles for set separations with ar-
bitrary submodular order functions: carving width,
rank width, and matroid tangles

The concepts of branch-width and tangles were introduced by Robertson and
Seymour [18] not only for graphs but more generally for hypergraphs. As the
order of a separation (A,B) they already considered, instead of |A \ B|, also
arbitrary symmetric submodular order functions |A,B| and proved the relevant
lemmas more generally for these. Geelen, Gerards, Robertson, and Whittle [10]
applied this explicitly to a submodular connectivity function.

Our aim in this section is to derive from Theorem 4.4 a duality theorem
for branch-width and tangles in arbitrary separation universes with an order
function, as introduced at the start of Section 5. This will imply the above
branch-width duality theorems for hypergraphs and matroids, as well as their
cousins for carving width [20] and rank-width of graphs [16].

Let U be any universe of separations of some set E of at least two elements,
with an order function (A,B) 7! |A,B|. Let k > 0 be an integer, and consider

Sk =
�
(A,B) 2 U : |A,B| < k

 
and S�

k =
�
(A,B) 2 Sk : |A|  1

 
.

Let us call an orientation of Sk a tangle of order k if it extends S�
k and avoids

F =
�
{(A1, B1), (A2, B2), (A3, B3)} ✓ Sk : A1 [A2 [A3 = E

 
,

where (A1, B1), (A2, B2), (A3, B3) need not be distinct; in particular, tangles
are consistent. This extends the existing notions of tangles for hypergraphs and
matroids, with their edge set or ground set as E, partitions as separations, and
the appropriate order functions.

Let F⇤ ✓ F be the set of stars in F . As in Lemma 5.3, it is easy to prove
that F⇤ is closed under shifting. We have the following analogue of Lemma 5.2:

Lemma 5.11. Every consistent F⇤-avoiding orientation of Sk avoids F .

Let us say that U has branch-width < k if there exists an Sk-tree over F⇤

that is rooted in S�
k . As before, this definition agrees with the usual ones when

U is a hypergraph or matroid. By Lemmas 5.1 and 5.11, Theorem 4.4 now
specializes as follows:

Theorem 5.12. Given a separation universe U with an order function, and k > 0,
the following assertions are equivalent:

(i) U has a tangle of order k.
(ii) Sk has a consistent F⇤-avoiding orientation extending S�

k .
(iii) U does not have branch-width < k.

5.5 Matroid tree-width

Hliněný and Whittle [11, 12] generalized the notion of tree-width from graphs to
matroids.10 Our aim in this section is to specialize our strong duality theorem
to a duality theorem for tree-width in matroids.

10In our matroid terminology we follow Oxley [17].
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Let M = (E, I) be a matroid with rank function r. Its connectivity function
is defined as

�(X) := r(X) + r(E r X)� r(M).

We consider the universe U of all bipartitions (X,Y ) of E. Since

|X,Y | := �(X) = �(Y )

is submodular and symmetric, it is an order function on U .
A tree-decomposition of M is a pair (T, ⌧), where T is a tree and ⌧ : E ! V (T )

is any map. Let t be a node of T , and let T1, . . . , Td be the components of T � t.
Then the width of t is the number

dX
i=1

r(E r Fi)� (d� 1) r(M),

where Fi = f�1(V (Ti)). (If t is the only node of T , we let its width be r(M).)
The width of (T, ⌧) is the maximum width of the nodes of T . The tree-width
of M is the minimum width over all tree-decompositions of M .

Matroid tree-width generalizes the tree-width of graphs in the expected way:

Theorem 5.13 (Hliněný and Whittle [11, 12]). The tree-width of a finite graph
containing at least one edge equals the tree-width of its cycle matroid.

In order to specialize Theorem 4.4 to a duality theorem for tree-width in
matroids, we consider

Sk = { (A,B) 2 U : |A,B| < k } and S�
k = { (A,B) 2 U : r(A) < k } ✓ Sk.

Since � is symmetric and submodular, Sk is separable by Lemma 5.1. Let

Fk :=
n

S ✓ U
�� S = {(Ai, Bi) : i = 0, . . . , n} is a star with n � 1

and
nX

i=0

r(Bi)� n r(M) < k
o
.

We remark that requiring S ✓ Sk in the definition of Fk would not spare us
a proof of the following lemma, which we shall need in the proof of Lemma 5.16.

Lemma 5.14. Every S 2 Fk is a subset of Sk.

Proof. We show that every star S = {(Ai, Bi) : i = 0, . . . , n} ✓ U satisfies

�(Ai) 
nX

i=0

r(Bi)� n r(M)

for all i = 0, . . . , n; if S 2 Fk, this implies that |Ai, Bi| < k for all i, as desired.
Since S is a star we have Ai ✓ Bj whenever i 6= j, and in particular Ai+1 ✓

B⇤
i := B1 \ . . . \Bi for i = 1, . . . , n� 1. Hence B⇤

i [Bi+1 ◆ E. Submodularity
of the rank function now gives

r(B⇤
i ) + r(Bi+1) � r(B⇤

i \Bi+1) + r(B⇤
i [Bi+1) = r(B⇤

i+1) + r(M)
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for each i = 1, . . . , n�1. Summing these inequalities over i = 1, . . . , n�1 yields

r(B1) + . . . + r(Bn) � r(B1 \ . . . \Bn) + (n� 1) r(M).

Hence for i = 0 (and by renumbering also for i = 1, . . . , n), the fact that S is a
star, and hence A0 ✓ B1 \ . . . \Bn, implies

nX
i=0

r(Bi)� n r(M) � r(B0) + r(B1 \ . . . \Bn)� r(M)

� r(B0) + r(A0)� r(M)

= �(A0).

In order to apply Theorem 4.4, we have to prove that Sk is Fk-separable:

Lemma 5.15. Sk is Fk-separable.

Proof. Let (W 0, U 0)  (U,W ) be separations in Sk. Choose (X,Y ) 2 Sk with
(W 0, U 0)  (X,Y )  (U,W ) and |X,Y | minimum. We claim that (X,Y ) is
Fk-linked to (U,W ) and (Y,X) is Fk-linked to (U 0,W 0). By symmetry, it is
enough to prove that (X,Y ) is Fk-linked to (U,W ).

The proof of Lemma 5.1 shows that (X,Y ) is linked to (U,W ).11 Now let

S =
�
(Ai, Bi) : i = 0, . . . , n

 
be a star in Fk \ S(U,W ), with (B0, A0)  (U,W ). Then

(Ai, Bi)  (B0, A0)  (U,W ) for all i � 1. (3)

We have to show that

S0 =
�
(A0

i, B
0
i) : i = 0, . . . , n

 
2 Fk

for (A0
i, B

0
i) := f#(U,W )

(X,Y ) (Ai, Bi).
From Lemma 4.1 we know that S0 is a star. Since (X,Y ) is linked to (U,W ),

we have S0 ✓ Sk by (3). It remains to show that

r(X \B0) +
nX

i=1

r(Y [Bi)� n r(M) =
nX

i=0

r(B0
i)� n r(M) < k . (4)

For i = 1, . . . , n let us abbreviate A⇤
i := A1 [ . . . [Ai and B⇤

i := B1 \ . . . \Bi.
By submodulary of the rank function, we have

r(X \B0) + r(X [B0)  r(X) + r(B0)
and r(Y [Bi) + r(Y \Bi)  r(Y ) + r(Bi) for i = 1, . . . , n.

For our proof of (4) we need that the sum of the first terms in these n + 1
inequalities is at most the sum of the last terms, or equivalently that the sum

11Technically, we do not need this fact at this point and could use Lemma 5.14 to deduce
it from the fact that all S0 as below lie in Fk. But that seems heavy-handed.
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of the second terms is at least the sum of the third terms. We show the latter,
that

r(X [B0) +
nX

i=1

r(Y \Bi) � r(X) + n r(Y ) . (5)

Since S is a star we have Ai ✓ Bj whenever i 6= j. Hence A⇤
n ✓ B0, giving

r(X [B0) � r(X [A⇤
n), (6)

and Ai+1 ✓ B⇤
i for i � 1. Hence B⇤

i [Bi+1 ◆ E. By submodularity, this implies

r(Y \B⇤
i ) + r(Y \Bi+1) � r(Y \B⇤

i+1) + r(Y )

for each i = 1, . . . , n�1, by induction on i. By summing this for i = 1, . . . , n�1,
we obtain nX

i=1

r(Y \Bi) � r(Y \B⇤
n) + (n� 1) r(Y ) . (7)

Since (X,Y ) and (A⇤
n, B⇤

n) are bipartitions of E, so is (X [ A⇤
n, Y \ B⇤

n).
As |X [A⇤

n, Y \B⇤
n| < |X,Y | would contradict our choice of (X,Y ),12 we thus

have |X [A⇤
n, Y \B⇤

n| � |X,Y |, and therefore

r(X [A⇤
n) + r(Y \B⇤

n) � r(X) + r(Y ). (8)

Adding up inequalities (6), (7), (8) we obtain (5), proving (4).

Lemma 5.16. M has an Sk-tree over Fk rooted in S�
k if and only if it has

tree-width less than k.

Proof. For the forward implication, consider any Sk-tree (T,↵) of M . Given
e 2 E, orient every edge st of T , with ↵(s, t) = (A,B) say, towards t if e 2 B,
and let ⌧ map e to the unique sink of T in this orientation. Then (T, ⌧) is a tree-
decomposition of M . If (T,↵) is over Fk and rooted in S�

k , the decomposition
is easily seen to have width less than k.

Conversely, let (T, ⌧) be a tree-decomposition of M of width less than k. If
r(M) < k then {(;, E), (E, ;)} ✓ S�

k . So there is a 2-node Sk-tree rooted in S�
k ,

which is vacuously over Fk. We may thus assume that r(M) � k, and so T has
at least two nodes. For each edge e = st of T , let Ts and Tt be the components
of T � e containing s and t, respectively. Let

↵(s, t) :=
�
⌧�1(Ts), ⌧�1(Tt)

�
2 U .

Since every node t has width less than k, its star {↵(s, t) : st 2 E(T ) } of
separations is in Fk unless t is a leaf, in which case ↵(t, s) 2 S�

k . By Lemma 5.14
this implies that ↵( ~E(T )) ✓ Sk, so (T,↵) is an Sk-tree over Fk rooted in S�

k .

Theorem 4.4 now yields the following duality theorem for matroid tree-width.
12Since (X [A⇤

n, Y \B⇤
n) < (X, Y ) < k in this case, (X [A⇤

n, Y \B⇤
n) would be in Sk.
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Theorem 5.17. Let M = (E, I) be a matroid with the rank function r, and let
k be an integer. Then the following statements are equivalent:

(i) M has tree-width at least k.

(ii) M has no Sk-tree over Fk rooted in S�
k .

(iii) Sk has a consistent Fk-avoiding orientation extending S�
k .

(iv) There exists a collection T of subsets of E satisfying the following:

• �(A) < k for all A 2 T ;
• for all A ✓ E with �(A) < k, either A 2 T or ErA 2 T but not both;
• whenever B ✓ A 2 T with �(B) < k, we have B 2 T ;
• whenever A1, . . . , An 2 T are disjoint,

nX
i=1

r(E r Ai)� (n� 1) r(M) � k.

Proof. Item (iv) is merely spells out the meaning of (iii).

5.6 Tree-decompositions of small adhesion

In this subsection we illustrate the versatility of Theorem 4.4 to deduce a duality
theorem for a new width parameter, one that measures both the width and the
adhesion of a tree-decomposition.

Recall that the adhesion of a tree-decomposition (T,V) of a graph G = (V,E)
is the largest size of an attachment set, the number maxst2E(T ) |Vs \ Vt|. (If T
has only one node t, we set the adhesion to |Vt| = |V |.) Trivially if a tree-
decomposition has width < k � 1, then it has an adhesion < k.

The idea now is to have a duality theorem for graphs whose tree structures
are the tree-decompositions of adhesion < k and width less than w� 1 � k� 1.
For w = k this should default to the usual duality between tree-width and
havens or brambles, as discussed in Section 5.2.

Let Sk and S�
k be as defined at the beginning of Section 5, with U the uni-

verse of all vertex separations of G equipped with the usual order function. Let

Fw =
�
S ✓ Sk | S = {(Ai, Bi) : i = 0, . . . , n} is a star with

��Tn
i=0 Bi

�� < w
 

,

as in Section 5.2. To apply Theorem 4.4, we only need the following lemma.

Lemma 5.18. Sk is Fw-separable.

Proof. Let (W 0, U 0)  (U,W ) be separations in Sk. Choose (X,Y ) 2 Sk so that
(W 0, U 0)  (X,Y )  (U,W ) and |X,Y | = |X \ Y | is minimum. We claim that
(X,Y ) is Fw-linked to (U,W ), and that (Y,X) is Fw-linked to (U 0,W 0). By
symmetry, it is enough to prove that (X,Y ) is Fw-linked to (U,W ). The proof
of Lemma 5.1 shows that (X,Y ) is linked to (U,W ).

Let
S = {(Ai, Bi) : i = 0, . . . , n}

be a star in Fw \ S(U,W ), with (B0, A0)  (U,W ). Then

(Ai, Bi)  (B0, A0)  (U,W ) for all i � 1. (9)
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We have to show that

S0 =
�
(A0

i, B
0
i) : i = 0, . . . , n

 
2 Fw

for (A0
i, B

0
i) := f#(U,W )

(X,Y ) (Ai, Bi).
From Lemma 4.1 we know that S0 is a star. Since (X,Y ) is linked to (U,W ),

we have S0 ✓ Sk by (9). It remains to show that
��Tn

i=0 B0
i

�� < w. As in Lem-
ma 5.6, we shall prove this by rewriting the intersection of all the B0

i as an
intersection of the two sides of a suitable separation, and use submodularity
and the choice of (X,Y ) to show that this separation has size < w.

By (9) and the definition of f#(U,W )
(X,Y ) , the separations in S0 are as follows:

(A0
0, B

0
0) = (A0 [ Y,B0 \X), while (A0

i, B
0
i) = (Ai \X,Bi [ Y ) for i � 1. (10)

Since the (Ai, Bi) are separations, i.e. in U , so is (
Sn

i=1 Ai,
Tn

i=1 Bi). As trivially
(B0, V ) 2 U , this implies that, for B⇤ :=

Tn
i=1 Bi, also

⇣ n[
i=1

Ai [B0 ,
n\

i=1

Bi \ V
⌘

= (B0, B
⇤) 2 U .

Note that
|B0, B

⇤| = |B0 \B⇤| =
n\

i=0

Bi < w (11)

since S 2 Fw.
Since (B0, B⇤)  (U,W ) by (9), and also (X,Y )  (U,W ), we further have

(W 0, U 0)  (X,Y )  (X [B0, Y \B⇤)  (U,W ).

So (X [ B0, Y \ B⇤) was a candidate for the choice of (X,Y ). As (X,Y ) was
chosen, we thus have |X [B0, Y \B⇤| � |X,Y |. As

|X [B0, Y \B⇤|+ |X \B0, Y [B⇤|  |X,Y |+ |B0, B
⇤|

by the submodularity of the order function, we deduce that

|B0 \X,B⇤ [ Y |  |B0, B
⇤| < w,

by (11). Hence by (10),

�� n\
i=0

B0
i

�� =
��(B0 \X) \

n\
i=1

(Bi [ Y )
�� = |B0 \X,B⇤ [ Y | < w ,

which means that S0 2 Fw.

The following translation lemma is proved like Lemma 5.7:

Lemma 5.19. G has an Sk-tree over Fw rooted in S�
k if and only if it has a

tree-decomposition of width less than w � 1 and adhesion less than k.

Theorem 4.4 and our two lemmas imply the following duality theorem:

Theorem 5.20. The following are equivalent for all finite graphs G and k > 0:
(i) Sk has a consistent Fw-avoiding orientation extending S�

k .
(ii) G has no Sk-tree over Fw rooted in S�

k .
(iii) G has no tree-decomposition of width < w � 1 and adhesion < k.
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5.7 Weakly Submodular Partition Functions

Amini, Mazoit, Nisse and Thomassé [1], and Lyaudet, Mazoit and Thomassé [14],
proposed a framework to unify duality theorems in graph minor theory which,
unlike ours, is based exclusively on partitions. Their work, presented to us by
Mazoit in the summer of 2013, inspired us to look for possible simplifications,
for generalizations to separations that are not partitions, and for applications
to tangle-like dense objects not covered by their framework. Our findings are
presented in this paper and its sequel [9]. Although our approach di↵ers from
theirs, we remain indebted to Mazoit and his coauthors for this inspiration.

Since the applications of our strong duality theorem include the applications
of [1], it may seem unnecessary to ask whether our result also implies theirs
directly. However, for completeness we address this question now.

A partition of a finite set E is a set of disjoint subsets of E, possibly empty,
whose union is E. We write P(E) for the set of all partitions of E. In [1],
any function P(E) ! R [ {1} is called a partition function of E. We abbre-
viate  ({A1, . . . , An}) to  (A1, . . . , An), but note that the partition remains
unordered. A partition function  is called weakly submodular in [1] if, for ev-
ery pair (A,B) of partitions of E and every choice of A0 2 A and B0 2 B, one
of the following holds with A =: {A0, . . . , An} and B =: {B0, . . . , Bm}:

(i) there exists a set F such that A0 ✓ F ✓ A0[(ErB0) and (A0, . . . , An) >
 (F,A1 r F, . . . , An r F );

(ii)  (B0, . . . , Bm) �  
�
B0 [ (E r A0), B1 \A0, . . . , Bm \A0

�
.

Let us translate this to our framework. Given A ✓ E, let Ā := E rA. Then
U := {(A, Ā) : A ✓ E} is a universe. Given a partition function  of E, let

Sk =
�
(A, Ā) 2 U :  (A, Ā) < k

 
and S�

k =
�
(A, Ā) 2 Sk : |A|  1

 
.

Every partition A = {A0, . . . , An} defines a star {(A0, Ā0), . . . , (An, Ān)} ✓ U ,
which we denote by S(A). Let

Fk :=
�
S(A) : A 2 P(E) and  (A) < k

 
.

If all the stars in Fk are subsets of Sk, we call  monotone. All the weakly
submodular partition functions used in [1] for applications are monotone, and
we do not know whether any exist that are not.

Lemma 5.21. If  is weakly submodular, then Sk is Fk-separable.

Proof. Let (W 0, U 0)  (U,W ) be separations in Sk. Choose (X,Y ) 2 Sk so that
(W 0, U 0)  (X,Y )  (U,W ), with  (X,Y ) minimum. We claim that (X,Y )
is Fk-linked to (U,W ) and (Y,X) is Fk-linked to (U 0,W 0). By symmetry, it is
enough to prove that (X,Y ) is Fk-linked to (U,W ).

We first prove that (X,Y ) is linked to (U,W ). Let (A,B) be a separation
in Sk such that (A,B)  (U,W ). Since  is weakly submodular, one of the
following holds:

(i) there exists F such that X ✓ F ✓ X [A and  (X,Y ) >  (F, F̄ );
(ii)  (B,A) �  (B [ Y,A \X).
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Since W 0 ✓ X ✓ F ✓ X [ A ✓ U , we have (W 0, U 0)  (F, F̄ )  (U,W ). So (i)
does not hold, by the choice of (X,Y ). So by (ii), (A \X,B [ Y ) 2 Sk. This
proves that (X,Y ) is linked to (U,W ).

Now let us show that stars can be shifted. Let

S = {(Ai, Bi) : i = 0, . . . , n}

be a star in Fk \ S(U,W ), with (B0, A0)  (U,W ). Thus,  (A0, . . . , An) < k.
We have to show that

S0 =
�
(A0

i, B
0
i) : i = 0, . . . , n

 
2 Fk

for (A0
i, B

0
i) := f#(U,W )

(X,Y ) (Ai, Bi). Since (Ai, Bi)  (B0, A0)  (U,W ) for i � 1,
we have (A0

0, B
0
0) = (A0[Y,B0\X), while (A0

i, B
0
i) = (Ai\X,Bi[Y ) for i � 1.

By the minimal choice of (X,Y ), there exists no F such that X ✓ F ✓ X[B0

and  (X,Y ) >  (F, F̄ ) (as earlier). Applying the weak submodularity of  
with (X,Y ) and (A0, . . . , An), we deduce that

 (A0
0, . . . , A

0
n) =  (A0 [ Y, A1 \X, . . . , Am \X)   (A0, . . . , An) < k.

Thus, S0 2 Fk.

In [1], a k-bramble for a weakly submodular partition function  of E is a
non-empty set B of pairwise intersecting subsets of E that contains an element
from every partition A of E with  (A) < k. It is non-principal if it contains
no singleton set {e}. In our terminology, Amini et al. [1] prove that there exists
a non-principal k-bramble for  if and only if there is no Sk-tree over Fk and
rooted in S�

k ; they call this a ‘partitioning k-search tree’.
Now any k-bramble B defines an orientation O of Sk: given (A,B) 2 Sk

exactly one of A,B must lie in B, and if B does we put (A,B) in O. Clearly O
is consistent and avoids Fk, and if B is non-principal it extends S�

k . Conversely,
given an orientation O of Sk, let B := {B : (A,B) 2 O}. If O is consistent, no
two elements of B are disjoint. If O extends S�

k , then B is non-principal. And
finally, if  is monotone and O avoids Fk, then B contains an element from
every partition A = {A1, . . . , An} of E with  (A) < k: since S(A) 2 Fk there
is (Ai, Āi) 2 S(A) r O, which means that (Āi, Ai) 2 O and thus Ai 2 B.

Lemma 5.21 and Theorem 4.4 thus imply the duality theorem of Amini et
al. [1] for monotone weakly submodular partition functions:

Theorem 5.22. The following are equivalent for all monotone weakly submod-
ular partition functions  of a finite set E and k > 0:

(i) There exists a non-principal k-bramble for  .
(ii) Sk has a consistent Fk-avoiding orientation extending S�

k .
(iii) There exists no Sk-tree over Fk rooted in S�

k .
(iv) There exists no partitioning k-search tree.
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5.8 Further applications

It would be interesting to see whether other natural ‘dense objects’ than those
discussed so far can be described in a tangle-like way, as orientations of a suitable
set S of separations of a graph G that has no subset in some set F ✓ 2S of
forbidden stars.

Answering a question of the first author, Bowler [3] answered this in the
negative for complete minors, a natural candidate. Using the terminology of [8]
for minors H of G, let us say that a separation (A,B) of G points to an IH ✓ G
if this IH has a branch set in B r A but none in A r B. A set of separations
points to a given IH if each of its elements does. Clearly, for every IKk ✓ G
exactly one of (A,B) and (B,A) in Sk points to this IKk.

Theorem 5.23. For every k � 5 there exists a graph G such that for no F ✓ 2Sk

are the consistent F-avoiding orientations of Sk precisely the orientations of Sk

that point to some IKk ✓ G.

To prove this, Bowler considered as G a TKk obtained by subdividing every
edge of a Kk exactly once. He constructed an orientation O such that every
star S ✓ O points to an IKk but the entire O does not. This O, then, avoids
every F consisting only of stars not pointing to any IKk. But any F ✓ 2Sk

such that the orientations of Sk pointing to an IKk are precisely the consistent
F-avoiding ones must consist of stars not pointing to an IKk, since any star
that does is contained in the unique orientation of Sk pointing to the IKk to
which it points.

However, Kk minors can be captured by F-avoiding orientations of Sk if we
do not insist that F contain only stars but allow it to contain weak stars: sets
of separations that pairwise either cross or point towards each other (formally:
consistent antichains in Sk). In [9] we prove a duality theorem for orientations
of separation systems avoiding such collections F of weak stars.
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