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Abstract. In this paper, we are comparing three generalised Bolzano-Weier-

straß properties: the Sikorski property (which fails for saturated fields),

the Keisler-Schmerl property, and the weak Bolzano-Weierstraß property

introduced by Carl, Galeotti, and Löwe. We show that the weak Bolzano-

Weierstraß property is “Bolzano-Weierstraß minus Cauchy completeness”

and is equivalent the tree property of the base number of the field. We

furthermore improve on a number of results by Carl, Galeotti, and Löwe.

1. Introduction

The research area of generalised Baire spaces (cf. [8] for a recent survey with a

list of open questions) deals with generalisations of real analysis to uncountable

cardinals, in particular, analysis in non-Archimedean ordered fields.

One of the important features of the real number field R for analysis is the fact

that it does not have gaps: this is usually expressed in the form of completeness

(either Dedekind or Cauchy), the intermediate value theorem, or the Bolzano-

Weierstraß theorem. In order to be an analogue of R, a non-Archimedean field

should therefore exhibit some forms of gaplessness.

In this paper, we consider Cauchy completeness, saturation, two Bolzano-

Weierstraß properties that we shall call the the Sikorski property and the Keisler-

Schmerl property, respectively, and a weak Bolzano-Weierstraß property due to

Carl, Galeotti, and Löwe (cf. [10, 7, 1]; definitions are given in § 5) and study

their relationships.

Some of these forms of gaplessness are in conflict with each other: e.g., the

Sikorski property cannot hold in saturated fields:

Theorem 1.1 (cf., e.g., [1, Corollary 4.8]). If K is a κ-saturated totally ordered

field with weight and base number κ, then K does not have the Sikorski property.
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In contrast, both the Keisler-Schmerl property and the weak Bolzano-Weier-

straß property can hold in saturated fields. Carl, Galeotti, and Löwe characterised

the set-theoretic strength of the weak Bolzano-Weierstraß property on saturated

fields:

Theorem 1.2 (Carl, Galeotti, & Löwe; [1, Corollary 4.23]). Let K be a Cauchy

complete and κ-spherically complete totally ordered field with bn(K) = κ such that

κ is uncountable and strongly inaccessible. Then the following are equivalent:

(1) κ has the tree property and

(2) wBWTK holds.

We shall show that the weak Bolzano-Weierstraß property is the remainder of

the Bolzano-Weierstraß property after removing Cauchy completeness (Theorem

5.4). Furthermore, we shall see that the set-theoretic strength of the Bolzano-

Weierstraß phenomenon rests in this remainder of the property and does not

require Cauchy completeness (Theorem 7.1).

The structure of the paper is as follows: in § 2, we remind the reader of basic

definitions from [1] and characterise weak compactness in terms of the long total

order property in § 3. We give definitions and basic properties of our generalised

notions of boundedness in § 4 and use these notions to define the three gener-

alisations of Bolzano-Weierstraß in § 5 where we also show the implications and

non-implications between the three properties.

The final two sections, §§ 6 & 7 improve on results from [1]: in § 6, we shall

improve Theorem 1.1 by showing that even for spherically complete fields with

base number κ, the Sikorski property implies that κ is a large cardinal (Theorem

6.3). As a corollary we obtain a result about successor cardinals that was claimed

in [1] but whose proof was flawed (Claim 6.1). Finally, in § 7, we shall improve

Theorem 1.2 by removing the additional assumptions of Cauchy completeness and

strong inaccessibility (Theorem 7.1).

2. Basic definitions

Since this paper is a sequel to [1], we shall freely use the notation introduced

in detail in [1, § 2]. In this section, we highlight those definitions that are crucial

for this paper and provide a few additional definitions.

If K := (K,+, ·, 0, 1,≤) is a totally ordered field, we write K+ := {x ∈ K ; 0 <

x} for the positive part of K. We let bn(K) be the shortest length of a sequence

converging to zero in K, called the base number of K; clearly, the cardinal bn(K)

is always regular. For several definitions, it is useful to fix a null sequence εβ → 0
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of length κ. If s, s′ : κ → K are sequences of length κ, we say that s′ is an

approximation to s if for all β < κ, we have |s(β) − s′(β)| < εβ .1 Clearly, if s′

is an approximation to s, then s is convergent if s′ is, and consequently s has a

convergent subsequence if and only if s′ does. If K is an ordered field, then non-

trivial (i.e., not eventually constant) sequences can only be convergent if their

length has cofinality bn(K); cf., e.g., [1, Corollary 2.6].

Notions of saturation. Two notions of saturation play a major role in this

paper: saturation and spherical completeness. If κ is a regular cardinal, then we

say that a total order (X,≤) is κ-saturated (or an ηκ-set) if for any L,R ⊆ X

such that L < R and |L|+ |R| < κ, there is x ∈ X such that L < x < R. We say

that it is κ-spherically complete if for every α < κ and for every nested family

I = {Iγ ; γ < α} of closed intervals, we have that
⋂
I 6= ∅. If K is an ordered

field with base number κ, then one can replace “closed” with “open” in the above

definition of spherical completeness (cf. [1, Lemma 2.4]).

If κ is a regular cardinal, every κ-saturated total order is κ-spherically complete,

but the converse does not hold (the real line R is ℵ1-spherically complete, but not

ℵ1-saturated).

Some useful facts about totally ordered fields. If K and K′ be totally or-

dered fields such that K is a dense subfield of K′, then bn(K) = bn(K′). Fur-

thermore, if K is κ-spherically complete or κ-saturated, then K′ is κ-spherically

complete or κ-saturated.

As usual, we can define a distance function on a totally ordered field and

obtain the usual notions of Cauchy sequence, Cauchy completeness, and Cauchy

completion (cf. [1, § 2.3] for details); we denote the Cauchy completion of K by K.

A field is dense in its Cauchy completion; thus, bn(K) = bn(K). If s and s′ are

sequences such that s′ is an approximation to s, then s is or contains a Cauchy

sequence if and only if s′ is or contains a Cauchy sequence.

If C and C ′ are two convex sets, we say that C and C ′ are separated by a

distance of at least ε ∈ K+ if for all x ∈ C and all y ∈ C ′, we have that |x−y| > ε.

We call a sequence in a total order strictly monotone if it is either strictly

ascending or strictly descending.

Lemma 2.1. Let K be a totally ordered field with bn(K) = κ and let s : κ → K

be a convergent sequence which is not eventually constant. Then s has a strictly

monotone subsequence of length κ.

1Formally, being an approximation depends on the choice of the sequence εβ ; for the results

in this paper, the choice of null sequence does not matter.
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Proof. Let ` ∈ K be the limit of s and S := ran(s). By the pigeon hole principle

and the assumption that s is not eventually constant, without loss of generality,

we can assume that s(α) < ` for all α < κ. Since bn(K) = κ, we know that no

subsequence of s of length < κ can converge to `, so for every A ⊆ S with |A| < κ,

there is some α such that A < s(α) < `. From this, we now recursively construct

a strictly increasing subsequence. �

3. The long total order property

A cardinal κ is said to have the long total order property if every total order

of size κ has a strictly monotone sequence of length κ. It is a folklore result that

the long total order property is equivalent to the weak compactness of κ. For

completeness, we shall give a proof of this fact here.

Lemma 3.1. If κ is cardinal, (X,≤) and (Y,≤) are total orders, X has size κ,

and (Y,≤) is κ-saturated, then (X,≤) embeds into (Y,≤).

Proof. Order X = {xα ; α < κ} in order type κ and construct an embedding

π : X → Y by recursion (using AC to pick the images of elements in X). At each

stage α, the number of previous elements that lie below xα and the number of

previous elements that lie above xα have size |α| < κ, and so the κ-saturation of

(Y,≤) allows us to pick the image of xα. �

We denote the lexicographic order of ordinal sequences of a fixed ordinal length

by ≤lex.

Lemma 3.2. If κ is a regular cardinal, then every total order of size κ can be

embedded in (2κ,≤lex).

Proof. We first observe that the map 0 7→ 01, 1 7→ 10, 2 7→ 11 induces an

embedding from 3κ to 2κ, so it is enough to embed the total order into 3κ. By

Lemma 3.1, we only need to find a κ-saturated suborder of (3κ,≤lex). If λ < κ

and s ∈ 2λ, we define

ŝ(α) :=


0 if α < λ and s(α) = 0,

2 if α < λ and s(α) = 1, and

1 if α ≥ λ.

It follows immediately from the regularity of κ that the set H := {ŝ ; s ∈ 2<κ} ⊆
3κ is κ-saturated. �

Note that the set H is order isomorphic to the subfield No<κ of the surreal

numbers which is well-known to be κ-saturated (cf., e.g., [6, 2] for an introduction

to the theory of surreal numbers).
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Lemma 3.3. Let κ be regular and λ < κ. Then there is no strictly monotone

κ-sequence in (2λ,≤lex).

Proof. This follows directly from the regularity of κ. Without loss of generality,

let s be a monotone sequence in 2λ of length κ. By definition of ≤lex, for each

α < λ, the value of s(α) can flip back and forth between 0 and 1 at most α many

times. By regularity of κ, find βα such that s(α) is fixed after βα. Once more, by

regularity, find an upper bound β < κ to all of the βα. Then the sequence s is

constant after β. �

Theorem 3.4 (Folklore). If κ is an uncountable cardinal. Then the following are

equivalent:

(1) κ is weakly compact and

(2) κ has the long total order property.

Proof. For κ inaccessible, this claim can be found in the textbook literature

(cf., e.g., [4, Theorem 2.1]). So, it is enough to show that (2) implies that κ is

inaccessible.

We first prove that κ is regular. Assume λ = cf(κ) < κ. For each α < λ let

Aα = α×{α}. Moreover, let A =
⋃
α<λAα and <A be the following linear order:

(β, γ) <A (β′, γ′) if and only if γ > γ′, or γ = γ′ and β < β′. Note that |A| = κ.

Moreover every strictly monotone λ-sequence s in A must be strictly decreasing

and such that for all α, β, γ < λ with α 6= β we have that if s(α) ∈ Aγ then

s(β) /∈ Aγ . So no strictly monotone sequence in A can have size κ contradicting

the hypothesis.

We now show that κ is a strong limit: suppose there is a λ < κ such that

2λ ≥ κ. Then there is a suborder of (2λ,≤lex) of cardinality κ which by the long

total order property has a strictly monotone sequence of length κ, contradicting

Lemma 3.3. �

4. Generalisations of boundedness

In this section, we introduce strengthenings of the standard notion of bound-

edness that will be used in § 5 to define the properties studied in this paper. In

the entire section, K and K′ are totally ordered fields with bn(K) = bn(K′) = κ.

As usual, if X ⊆ K, we call ch(X) := {z ∈ K ; ∃x, y ∈ X(x ≤ z ≤ y)} the convex

hull of X. If K is a subfield of K′ and D is convex in K′, then D ∩K is convex in

K and ch(D ∩K) = D.

Definition 4.1. Let s : κ→ K be a κ-sequence in K and S := ran(s).
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(1) We say that s is totally bounded if for all ε ∈ K+ there is βε < κ such

that for all β < κ there is γ < βε and |s(β)− s(γ)| < ε.

(2) Let C be a bounded convex subset of K such that |S ∩ C| = κ, and let

ε ∈ K+. We say that I is a witnessing family for s, C, and ε if |I| = µ < κ

and I = {〈`α, rα〉 ; α < µ} is family of pairs of elements in K such that

(a) for each α < µ, we have `α < rα, rα−`α < ε, and Iα := (`α, rα) ⊆ C,

and

(b) |(S ∩ C) \
⋃
α<µ Iα| < κ.

(3) The sequence s is called interval witnessed if for every bounded convex

set C in K such that |S ∩ C| = κ and every ε ∈ K+ there is a witnessing

family for s, C, and ε.

Lemma 4.2. Let s : κ→ K be a κ-sequence in K. Then the following implications

hold:

s is convergent
(1)

qy

(2)

%-
s is a Cauchy sequence

(3) %-

s is interval witnessed

(4)qy
s is totally bounded.

Proof. (1) is the standard proof and (2) is straightforward.

(3) Fix ε ∈ K+; since s is Cauchy, find some γε such that for all β, β′ ≥ γε, we

have that |s(β)− s(β′)| < ε. Then βε := γε + 1 is a total bound for s.

(4) If |S| < κ, then it is clearly totally bounded: let β < κ be such that

{sγ ; γ < β} = S; then βε := β works for all ε ∈ K+. Thus assume that

|S| = κ and fix ε ∈ K+; since s is interval witnessed, find a witnessing family

I = {Iα ; α < µ} for s, ch(S), and ε (if |S| < κ, then s is clearly totally bounded).

Define

η := min{β ; ∀β′ ≥ β(s(β′) ∈
⋃
I)},(*)

η′ := min{β ; ∀α < µ∃β′ < β(s(β′) ∈ Iα)}, and(**)

η∗ := max{η, η′}.

Then η∗ is a total bound for s: if β ≥ η∗, find α such that s(β) ∈ Iα by (*).

Then, (**) implies that there is some β′ < η′ ≤ η∗ such that s(β′) ∈ Iα, so

|s(β)− s(β′)| < ε. �
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Observation 4.3. If K is not Cauchy complete, then there are Cauchy sequences

that are not interval witnessed. (In particular, implication (4) in Lemma 4.2

cannot be reversed.)

Proof. Let s be a Cauchy sequence that does not converge and let ` ∈ K be

its limit in the Cauchy completion K of K. Without loss of generality, assume

that s is strictly increasing and entirely contained within C := (0, `). Since s is

Cauchy, every subinterval of C with positive distance from ` contains only <κ

many elements of s. Since ` /∈ K, all intervals that are part of any sequence of

intervals satisfying Definition 4.1 (2a) will have positive distance from `, so for

cardinality reasons no such sequence can satisfy Definition 4.1 (2b) for any ε. �

Let s : κ→ K be a κ-sequence and C be a convex set. We say that s is padded

within C if there is an ε such that for every α, we have that (s(α)−ε, s(α)+ε) ⊆ C.

Lemma 4.4. Let s : κ→ K be a sequence, S := ran(s), C be any bounded convex

set such that S ⊆ C, and assume that no element of S is either the least upper

bound or greatest lower bound of C. Then either s has a Cauchy subsequence or

s is padded within C.

Proof. We use our fixed null sequence εβ : if s is not padded within C, then for

each β, there is αβ such that (s(αβ) − εβ , s(αβ) + εβ) 6⊆ C. By the pigeon hole

principle, without loss of generality, there is a set E of size κ such that s(αβ)+εβ /∈
C for each β ∈ E. Consider {s(αβ) ; β ∈ E}. If this set has cardinality κ, then

it forms a Cauchy subsequence of s. If it does not have cardinality κ, then by

regularity of κ, there is some x and a set B ⊆ E of cardinality κ such that

x = s(αβ) for all β ∈ B. Thus, the sequence {x+ εβ ; β ∈ B} lies entirely outside

of C, but converges to x ∈ C: thus x is the largest element of C, contradicting

our assumption. �

Lemma 4.5. Let K be cofinal in K′. If s : κ→ K is interval witnessed in K, then

s is interval witnessed in K′.

Proof. Let D be bounded convex in K′ and η > 0. Since K was cofinal in K′,

C := D ∩ K is bounded convex in K and there is some 0 < ε < η in K+. Let

I := {〈`α, rα〉 ; α < µ} be a witnessing family for s, C, and ε in K. Clearly, I is

also a witnessing family for s, D, and η in K′. �

Lemma 4.6. Let s, s′ : κ→ K be sequences such that s is interval witnessed and

s′ is an approximation to s. Then either s contains a convergent subsequence or

s′ is interval witnessed.
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Proof. Fix C and ε and find a witnessing family I = {Iα ; α < µ} for s, C, and

ε. If this is a witnessing family for s′, C, and ε, we are done, so let us assume

that this is not the case. This means that the set B := {β ; s′(β) /∈
⋃
α<µ Iα}

has cardinality κ. By the pigeon hole principle, find 〈`α, rα〉 ∈ I such that

B′ := {β ∈ B ; `α < s(β) < rα} has cardinality κ. This means that for each

β ∈ B′, we either have s′(β) < `α < s(β) or s(β) < rα < s′(β). Once more using

the pigeon hole principle, we find a set B′′ of cardinality κ where one of the two

alternatives holds, say, without loss of generality, s(β) < rα < s′(β). But since s′

was an approximation of s, we have that

|s(β)− rα| ≤ |s(β)− s′(β)| < εβ ,

and hence the subsequence of the s(β) with β ∈ B′′ converges to rα, so s has a

convergent subsequence. �

Lemma 4.7. Let K be the Cauchy completion of K. If s : κ→ K is interval wit-

nessed in K, then either s has a convergent subsequence or s is interval witnessed

in K.

Proof. If s has a convergent subsequence, we are done, so let us assume that it

does not and show that it is interval witnessed in K. Fix a bounded convex set C

and ε > 0, and write S := ran(s). Since s is interval witnessed in K, let I be a

witnessing family for s, C, and ε in K. We show that for each pair 〈`α, rα〉 ∈ I
we can find b, b′ ∈ K such that `α < b < b′ < rα such that resulting set of pairs

is still a witnessing family for s, C, and ε.

Since `α ∈ K, there is a strictly decreasing sequence t : κ → K converging to

`α. If for an unbounded number of β, there is some β′ with `α < s(β′) < t(β),

then these form a subsequence of s converging to `α. Contradiction! Thus, there

is a bound b ∈ K such that `α < b < rα and (`α, b) ∩ S = ∅. We use the same

argument for the upper bound rα and obtain b′ ∈ K with b < b′ < rα such that

(b′, rα) ∩ S = ∅. So, we can replace (`α, rα) by (b, b′) without changing the fact

that the set of intervals is a witnessing family. Do this for every pair occurring in

I and obtain a witnessing family for s, C, and ε in K. �

5. Three Bolzano-Weierstraß properties

As before, K and K′ are totally ordered fields with bn(K) = bn(K′) = κ. We

introduce the three generalisations of the Bolzano-Weierstraß theorem mentioned

in the introduction.
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Sikorski: We say that K has the Bolzano-Weierstraß property due to Sikorski (in

short, the Sikorski property) if every bounded κ-sequence in K has a convergent

subsequence and write BWTK for this statement [10] (cf. also [9, 3]).

Keisler & Schmerl: We say that K has the Bolzano-Weierstraß property due

to Keisler and Schmerl (in short, the Keisler-Schmerl property) if every totally

bounded κ-sequence in K has a convergent subsequence and write BWT∗K for this

statement [7].

Carl, Galeotti, & Löwe: We say that K has the weak Bolzano-Weierstraß

property if every interval witnessed κ-sequence in K has a convergent subsequence

and write wBWTK for this statement [1].

Proposition 5.1. The following implications hold:

BWTK

(1) +3 BWT∗K
(2) +3

(3)

��

K is Cauchy complete.

wBWTK

Proof. (1) is obvious; (2) is Lemma 4.2 (3); (3) is Lemma 4.2 (4). �

The following proposition tells us that the weak Bolzano-Weierstraß property is

preserved by thinning out a field (this is not the case for the other two properties

since they both imply Cauchy completeness by Proposition 5.1):

Proposition 5.2. Let K be cofinal in K′. Then wBWTK′ implies wBWTK.

Proof. Let s : κ→ K be an interval witnessed sequence in K. By Lemma 4.5, s

is interval witnessed in K′. Thus, using wBWTK′ , we get a convergent subsequence

s′ of s with limit `. We claim that ` ∈ K, proving the claim.

Case 1: s′ has an eventually constant subsequence. Then clearly, ` ∈ K.

Case 2: s′ has no eventually constant subsequence. By the pigeon hole principle,

we can assume, without loss of generality, that the range of s′ lies within the

bounded convex set C := {x ∈ K ; `− 1 < x < `}. Since s was interval witnessed

in K, we find an witnessing family I for s, C, and 1. Using once more the

pigeon hole principle, we find (x, y) ∈ I that contains κ many elements of ran(s′)

(and hence is unbounded below `). Note that x, y ∈ K. Clearly, since (x, y) is

unbounded below `, we have ` ≤ y. But since (x, y) ⊆ C = {x ∈ K ; `− 1 < x <

`}, we know that y ≤ `. So ` = y ∈ K which proves the claim. �

Theorem 5.3. Let K be the Cauchy completion of K. Then wBWTK if and only

if wBWTK.
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Proof. Since K is cofinal in K, the “if” direction is just Proposition 5.2. Now

assume wBWTK and let s : κ → K be interval witnessed in K. We need to show

that s has a convergent subsequence.

Since K is the Cauchy completion of K, we find an approximation s : κ → K

to s′. By Lemma 4.6, we can assume that s′ is interval witnessed in K (otherwise

s has a convergent subsequence and we are done). If s′ is not interval witnessed

in K, then it contains a convergent subsequence by Lemma 4.7; if it is interval

witnessed in K, then it contains a convergent subsequence by wBWTK. So, in

either case, s′ has a convergent subsequence, but since s′ was an approximation

to s, the sequence s must contain a convergent subsequence. �

Theorem 5.4. A totally ordered field K has the Keisler-Schmerl property if and

only if it has the weak Bolzano-Weierstraß property and is Cauchy complete.

Proof. The “only if” direction is Proposition 5.1 (2) & (3), so let us prove the

“if” direction.

Let s : κ → K be a totally bounded sequence and S := ran(s). We need to

show that it has a convergent subsequence.

Fix a bounded convex set C ⊇ S and ε > 0. If C has a least upper bound

or greatest lower bound in S, then check whether this value occurs cofinally

often in s. If so, then s has a constant subsequence of length κ, and hence a

convergent subsequence. If not, then we replace s with the sequence cut after

the last occurrence of this value and can henceforth assume that C satisfies the

conditions of Lemma 4.4.

As a consequence, we know from Lemma 4.4 that s either contains a Cauchy

subsequence or is padded in C. Since we assumed that K is Cauchy complete, the

first case implies that s contains a convergent subsequence and we are done. So,

we can assume that s is padded in C, say, by some value ε′. Let η := min{ε, ε′}.
By total boundedness, we find some βη < κ such that for all β < κ there is a

γ < βη such that |s(β)− s(γ)| < η. Thus, if Jα := (s(α)− η, s(α) + η) for α < βη,

then S ⊆
⋃
α<βη

Jα ⊆ C (since η ≤ ε′). It is now easy to transform this family

of intervals into a witnessing family for s, C, and ε of size |βη| < κ. Hence s is

interval witnessed, and thus by wBWTK has a convergent subsequence. �

Corollary 5.5. None of the converses of the implications of Proposition 5.1 hold

in general.

Proof. If κ is weakly compact, then consider No<κ and its Cauchy completion

Rκ. By Theorem 1.2, Rκ has the weak Bolzano-Weierstraß property. Since it is

Cauchy complete, it has the Keisler-Schmerl property, but since it is κ-saturated,
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by Theorem 1.1, it cannot have the Sikorski property, so implication (1) cannot be

reversed. By Theorem 5.3, No<κ inherits the weak Bolzano-Weierstraß property

from Rκ, but since it is not Cauchy complete, it cannot have the Keisler-Schmerl

property, so implication (3) cannot be reversed. By Theorem 1.2 once more, if κ

is inaccessible, but not weakly compact, then Rκ is Cauchy complete, but does

not have the weak Bolzano-Weierstraß property (and thus not the Keisler-Schmerl

property), so implication (2) cannot be reversed. �

6. Spherical completeness & the Sikorski property

Theorem 1.1 shows that saturation and the Sikorski property are incompatible.

This raises the natural question whether that also holds for the weaker notion of

spherical completeness. In [1], the authors claimed that this is true for successor

ordinals:

Claim 6.1 (Carl, Galeotti, & Löwe; [1, Corollary 4.10]). If K is a field with

w(K) = bn(K) = κ+ which is κ+-spherically complete, then BWTK does not hold.

This claim is correct, but the proof relied on [1, Lemma 2.8] whose proof is

flawed (cf. [5, pp. 45–46] for a detailed discussion). Galeotti provided a separate

proof of the special case κ = ℵ1 in [5, Lemma 3.11]. In this section, we fix the

issue by proving (a considerable strengthening of) Claim 6.1.

Lemma 6.2. Let K be a totally ordered field with bn(K) = κ. Assume that K

is κ-spherically complete. Then there is a map I with dom(I) = 2<κ such that

for s ∈ 2α, we have that I(s) = (`s, rs) with rs − `s ≤ εα and if s ⊆ t, then

I(s) ⊇ I(t).

Proof. We construct the map I by recursion. Let I(∅) := (0, 1). Suppose that

I(s) = (`s, rs) is defined. Then let

I(sa0) := (`s,min{`s + εdom(s)+1,
rs + `s

2
}) and

I(sa1) := (max{rs − εdom(s)+1,
rs + `s

2
}, rs).

If λ is a limit ordinal and s a binary sequence of length λ, consider the sequence

Iα := Is�α for α < λ. This is a sequence of nested intervals of size less than κ,

and thus by κ-spherical completeness, we know that
⋂
α<λ Iα 6= ∅. But we also

know that the sequences {`s�α ; α < λ} and {rs�α ; α < λ} cannot be convergent

(since they are too short), so the intersection must contain at least two (in fact,

many) elements, say, x < y. Let `s := x and rs := min{x+ ελ, y}. �
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Theorem 6.3. Let K be a κ-spherically complete totally ordered field with bn(K) =

κ. If K has the Sikorski property, then κ is weakly compact.

Proof. We are going to use Theorem 3.4 and prove that κ has the long total

order property. Fix any total order (X,≤) of size κ.

The field K is κ-spherically complete, so we can use Lemma 6.2 obtain a func-

tion I assigning intervals I(s) = (`s, rs) to the sequences in the full binary tree s.

If x ∈ 2κ, consider `α := `x�α and rα := rx�α. By construction, these sequences

are Cauchy sequences and rα − `α ≤ εα.

The Sikorski property of K implies that K is Cauchy complete, so these se-

quences converge to a unique element of the field which we denote by I(x). By

construction, we get that if x ≤lex y, then I(x) < I(y), so I is an order preserving

embedding of (2κ,≤lex) into (K,≤), or, more precisely, into the unit interval (0, 1)

of the field. Thus, by Lemma 3.2 (X,≤) is embeddable into ((0, 1),≤); we denote

the image of X under this embedding as X̂ ⊆ (0, 1) ⊆ K. Consequently, X̂ is a

bounded set of size κ and thus, by BWTK, there is a convergent sequence consist-

ing of elements of X̂ which, by Lemma 2.1, has a strictly monotone subsequence.

This establishes the long total order property of κ which by Theorem 3.4 implies

that κ is weakly compact. �

Theorem 6.3 immediately implies Claim 6.1 since successor cardinals are not

weakly compact.

7. Weak compactness & weak Bolzano-Weierstraß

In this section, we strengthen Theorem 1.2 by removing the assumptions of

Cauchy completeness of K and of strong inaccessibility of κ. As before, we fix a

totally ordered field K with bn(K) = κ.

Theorem 7.1. If K is κ-spherically complete, then the following are equivalent:

(1) κ has the tree property and

(2) wBWTK holds.

Note that Theorem 5.4 allows us to reformulate Theorem 7.1 in terms of the

Keisler-Schmerl property:

Corollary 7.2. If K is κ-spherically complete and Cauchy complete, then the

following are equivalent:

(1) κ has the tree property and

(2) BWT∗K holds.
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Proof of Theorem 7.1. By Theorem 5.3, it is enough to show the claim for

Cauchy complete fields (in particular, we can use the proofs from [1] that used

the assumption of Cauchy completeness). Thus, “(2)⇒(1)” is just [1, Theorem

4.17].

The proof of “(1)⇒(2)” follows the proof of [1, Theorem 4.21]; however, that

proof has as additional assumption that κ is strongly inaccessible, so we need to

modify those steps in the construction that use this assumption. The proof of [1,

Theorem 4.21] takes an interval witnessed sequence s : κ → K with S := ran(s)

and constructs for each α < κ, a set of pairwise disjoint intervals Tα by recursion;

these intervals form the tree that produces the convergent subsequence via the

tree property of κ. The conditions that need to be checked in the tree construction

are [1, p. 1103]:

(1) for each α < κ, |Tα| < κ,

(2) for each α < κ and each I ∈ Tα, we have that |S ∩ I| = κ,

(3) for each α < β < κ and every I ∈ Tβ , there is a J ∈ Tα such that I is a

subinterval of J , and

(4) for each α < κ, we have |Mα| < κ (where Sα := S ∩
⋃
{I ; I ∈ Tα} and

Mα := S\Sα).

If Eα is the set of all interval endpoints occurring in Tα, then |Eα| < κ, and

thus (since bn(K) = κ), we find εα > 0 such that for all x, y ∈ Eα, εα < |x − y|.
Hence, any two intervals I, I ′ ∈ Tα are separated by at least εα.

The only step in the construction in [1] that uses the assumption that κ is

strongly inaccessible is the limit case of the recursion, so this is the only part of

the proof that requires a change:

Let α be a limit ordinal and let the previous sets of intervals Tβ , for β < α

be defined, satisfying (1) to (4). Let T<α :=
⋃
β<α Tβ be ordered by reverse

inclusion. Note that {εβ ; β < α} is a set of positive elements of K of size smaller

than κ, and thus (since bn(K) = κ), there is some ε > 0 smaller than all of the

εβ (for β < α). Any two intervals in T<α are separated by at least ε.

Let B be the set of branches through this tree; then for any b ∈ B, the set

Cb :=
⋂
{I ; I ∈ b} is a convex set and the proof of the following claim remains

the same [1, Claim 4.22]:

Claim 7.3. We have that S\
⋃
β<αMβ = S ∩

⋃
b∈B Cb.

When κ is strongly inaccessible, we know that |B| < κ, but this need not be the

case in our setting. However, we can argue that only fewer than κ many branches

matter for the construction:
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By our choice of ε, we know that for every two distinct branches b, b′ ∈ B
the sets Cb and Cb′ are separated by a distance of at least ε. Since s is interval

witnessed, we obtain a witnessing family I with |I| < κ for s, (x∗, y∗), and ε.

Since any two of the sets Cb are separated by a distance of at least ε, we get that

for any I ∈ I,

|{b ; Cb ∩ I 6= ∅}| ≤ 1.

Therefore, the set B′ := {b ∈ B ; ∃I ∈ I(Cb ∩ I 6= ∅)} has cardinality smaller

than κ.

By inductive hypothesis (4), we know that |Mβ | < κ for each β < α, and thus,

by regularity of κ,
⋃
β<αMβ has size less than κ, hence by Claim 7.3, we have that

|S ∩
⋃
b∈B Cb| = κ. Moreover, since |S \

⋃
I| < κ we have that |S \

⋃
b∈B′ Cb| < κ.

For each b ∈ B′ we can apply the fact that s was interval witnessed to such

a convex set Cb and find a set Ib of fewer than κ many subintervals of Cb with

diameter <δ(α) such that |S ∩ (Cb\
⋃
Ib)| < κ. Now let Tα := {I ; there is a

b ∈ B′ such that |S ∩ Cb| = κ and I ∈ Ib and |S ∩ I| = κ}.
Property (1) follows from the facts that κ is regular, |B′| < κ, and for each

b ∈ B′, |Ib| < κ. As before, property (4) follows from (1) and fact that bn(K) = κ.

Property (2) and (3) are clear by construction. LetW0 :=
⋃
{S∩Cb ; |S∩Cb| < κ};

once more, by regularity of κ and |B′| < κ, we get that |W0| < κ. Furthermore,

let W1 :=
⋃
{S ∩ (Cb\

⋃
Ib) ; |S ∩ Cb| = κ}; again, regularity of κ and the choice

of Ib implies that |W1| < κ. But Mα =
⋃
β<αMβ ∪W0 ∪W1, so it has size less

than κ, and thus we checked that property (4) holds as well.

This finishes the construction for the limit case; the rest of the proof is the

same as in [1, Theorem 4.21]. �
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