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Local Likelihood Estimators in a

Regression Model for Stock Returns

U. Jönck

Preprint–No. 2006-03 May 2006

FACHBEREICH MATHEMATIK

SCHWERPUNKT MATHEMATISCHE STATISTIK

UND STOCHASTISCHE PROZESSE

BUNDESSTR. 55, D – 20146 HAMBURG



LOCAL LIKELIHOOD ESTIMATORS IN A REGRESSION
MODEL FOR STOCK RETURNS1

Uwe Christian Jönck2

May 2006

Abstract

We consider a non-stationary regression type model for stock returns in which the

innovations are described by four-parameter distributions and the parameters are as-

sumed to be smooth, deterministic functions of time. Incorporating also normal distri-

butions for modelling the innovations, our model is capable of adapting to light-tailed

innovations as well as to heavy-tailed ones. Thus, it turns out to be a very flexible

approach. Both, for the fitting of the model and for forecasting the distributions of

future returns, we use local likelihood methods for estimation of the parameters. We

apply our model to the S&P500 return series, observed over a period of twelve years.

We show that it fits these data quite well and that it yields reasonable one-day-ahead

forecasts.
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1 Introduction

During the past twenty years remarkable efforts were made to develop and investigate models
for time series of stock returns, i.e. for time series Xt = log(Pt/Pt−1), t = 1, . . . , n, where
Pt represents the price of a stock (or a stock index) at time t. In doing so the ARCH and
GARCH models of Engle (1982) and Bollerslev (1986) were in the centre of interest. The
basic GARCH(p, q) model takes the form

(1.1) Xt = σtεt,

with white noise {εt} and volatilities given by

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j .

There have been various modifications on this approach, which led to more sophisticated but
on the other hand also more complicated models. For an overview see for example Bollerslev
et al. (1994) or Gouriéroux (1997). These models succeed in reproducing various stylized
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facts. However, especially when dealing with long time series, they also have some draw-
backs, such as the occurence of the so-called IGARCH effect in the popular GARCH(1,1)

model. (A critical discussion of this model can be found in Stărică 2003.) Mikosch and
Stărică (2003, 2004) argue that this effect could be due to the fact that time series of log
returns are actually not stationary, which is one of the basic paradigms of the GARCH class
models. Furthermore, they show that also the so-called long range dependence effects in the
second moment structure can be explained if the underlying time series is non-stationary.
The assumption of stationarity might also seem questionable especially for long financial
time series, because the financial markets and the general economic framework may change
over long time periods. Consequently, the concept of stationarity might not be adequate
for a financial time series model. A weakening of the strong requirement of stationarity
might be the concept of a locally stationary behaviour of the time series: this means that for
small time intervals the time series is nearly stationary, whereas over longer time intervals
its (stochastic) behaviour changes gradually.

Drees and Stărică (2002) propose a very simple regression-based model that drops the
assumption of stationarity. For the returns Xt Drees and Stărică presume a multiplicative
structure, similar to that of (1.1). The difference to the GARCH models lies in the mod-
elling approach for the volatilities σt. In the GARCH class models these are determined by
endogenous factors, namely by past volatilities as well as past returns. In contrast to that,
Drees and Stărică assume the volatilities to be driven by some unknown (presumably rather
complex) market conditions, and hence to be determined exogenously. However, this exte-
rior mechanism might be too complex to develop a realistic stochastic model for it. For this
reason Drees and Stărică simply model the volatilities as a smooth, deterministic function
of time. Thus, their basic model is the following:

(1.2)

⎧⎪⎪⎨
⎪⎪⎩

Xt = µ + σ(t)εt, t = 1, 2, . . . , n, µ = const.,

{εt : t = 1, . . . , n} ∼ IID(0, 1),

σ(t), t = 1, 2, . . . , n, a smooth, deterministic function of time.

Considering the centered returns Rt = Xt − µ, we have

R2
t = σ(t)2 + σ(t)2(ε2

t − 1).

Hence, (1.2) can be interpreted as a regression model for the squared volatilities, and non-
parametric regression techniques can be applied for estimating the volatilities. The innova-
tions εt are modelled by asymmetric Pearson Type VII distributions, which generalize the
class of t-distributions (see below), and thus allow for heavy tails. Drees and Stărică fit this
model to the daily returns of the closing prices of the Standard & Poor’s 500 (S&P500)
stock index from 2 January 1990 to 21 February 2002, depicted in Figure 1.1. They esti-
mate the volatilities by a simple Nadaraya-Watson kernel estimator and they use a maximum
likelihood (ML) estimator to determine the parameters of the t-distributions. They show
that their model is competitive to the conventional GARCH(1,1) and EGARCH(1,1) models
concerning the fitting of the data as well as the forecasting of future return distributions.

In this paper (which can be regarded as a continuation of the work of Drees and Stărică
2002) we take up and refine the above regression model. However, instead of the assump-
tion of identically distributed innovations, we model the parameters of the distributions as
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Figure 1.1. Daily returns of the closing prices of the S&P500 index from 2 January 1990
to 21 February 2002.

smooth functions of time. Furthermore, we expand the model by modelling innovations
with very light tails by normal distributions. These two new aspects increase the model’s
flexibility. For both, the fitting of this refined model to the S&P500 return series and the
forecasting of future return distributions, we use local likelihood estimators. These esti-
mators combine the idea of ML estimation and nonparametric regression techniques. We
discuss their asymptotic behaviour, which enables us to construct asymptotic confidence
intervals for the true parameters. The theoretical background for these asymptotics is based
on a paper of Aerts and Claeskens (1997). Assessments of the estimated parameters and the
estimated forecasts, respectively, show that our approach seems to provide a good fitting of
the data as well as reasonable forecasts.

The paper is organized as follows: in Section 2 we present the underlying model. In
Section 3 we give a brief overview of the method of local likelihood estimation, and we
discuss the construction of asymptotic confidence intervals. In Section 4 we fit the model
to the S&P500 data and evaluate the results with several testing devices. We also provide
forecasts of future return distributions, which is done in Section 5. Section 6 concludes.

2 Refinement of the model of Drees and Stărică

We consider the regression model (1.2) from the previous section. In the following, instead of
the returns Xt we consider the centered returns Rt = Xt − µ. Then we have approximately

(2.1) Rt = Xt − Xn = σ(t)εt,

regarding Xn = 1/n
∑n

j=1 Xj as an approximation for µ = EXt, and neglecting an estima-
tion error that might occur. We assume the innovations εt—and, consequently, the centered
returns, too—to be independent and distributed with density

g(x; u+, u−, v+, v−) =
1
2

(
g(|x|; u−, v−)�{x < 0} + g(x; u+, v+)�{x ≥ 0}

)
,

u± ∈ [0, 2), τ± ∈ (0,∞),
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where

(2.2) g(x; u, v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2Γ(1/u)
Γ(1/u−1/2)

√
π
·
√

u
v

(
1 +

(
x
v

)2
u
)−1/u

�{x ≥ 0}, u > 0,

2
v
√

π
exp

{
− (

x
v

)2
}
�{x ≥ 0}, u = 0.

The corresponding cdf is denoted G(·; u+, u−, v+, v−), or sometimes just G. The parameters
u+ and u− essentially determine the shape of the density g: for u > 0 the term 1/2g(·; u, v)

equals the right tail of the density of a t-distribution with 2/u − 1 degrees of freedom and
scale parameter v/(2 − u)1/2 (which is sometimes also referred to as a Pearson Type VII
distribution, cf. Johnson and Kotz 1970, p. 114ff.), and for u = 0 it equals the right tail of
the density of a normal distribution with mean zero and variance v2/2. The parameters v+

and v− behave like scale parameters for the positive and negative parts of the distribution,
respectively. It is easily seen that G has finite variance iff u+, u− < 2/3. This modelling
approach is a bit more flexible than that of Drees and Stărică (2002), who always assume
u+, u− > 0. Our model should be able to adapt to heavy-tailed as well as to light-tailed
innovations.

Note that for each x we have g(x; u, v) → g(x; 0, v) as u → 0. Hence, g(x; 0, v) can
also be considered an approximation to g(x; u, v) for small values u. In the following this
property is often referred to as the “normal approximation” of the tails.

Another nice property of the law G is that it allows for asymmetry in the tails, and
thus seems quite flexible. Admittedly, this has the disadvantage that the distributions G

in general are not centered, but only have median zero: thus, it may appear somewhat
inconsequent, to model the innovations (and thus the centered returns)—presumed to have
mean zero—by a class of distributions that in general do not have this property. However, for
practical applications this does not seem to be of great importance (cf. Section 4). Numerical
computations also show that it makes no difference for the parameter estimation (discussed
below) if the returns are centered according to (2.1) or if instead of the empirical mean the
empirical median is subtracted from the returns.

We furhter refine the model of Drees and Stărică by dropping their assumption of identi-
cally distributed innovations. Instead, we assume the parameters to be smooth, deterministic
functions of time, i.e. we have as an initial approach

εt ∼ G(·; u+(t), u−(t), v+(t), v−(t)).

To avoid an overparametrization resulting from the additional scale parameter σ(t), we
introduce new parameters τ+(t) := σ(t)v+(t) and τ−(t) := σ(t)v−(t), which leads to the
modelling assumption of independent centered returns

(2.3) Rt ∼ G(·; u+(t), u−(t), τ+(t), τ−(t)).

Hence, our model is completely determined by the distributions of the centerd returns, given
by (2.3), and the smooth parameter function

θ : {1, . . . , n} → [0, 2)2 × (0,∞)2, t �→

⎛
⎜⎜⎜⎜⎝

θ1(t)

θ2(t)

θ3(t)

θ4(t)

⎞
⎟⎟⎟⎟⎠ ≡

⎛
⎜⎜⎜⎜⎝

u+(t)

u−(t)

τ+(t)

τ−(t)

⎞
⎟⎟⎟⎟⎠ .



LOCAL LIKELIHOOD ESTIMATORS IN A REGRESSION MODEL FOR STOCK RETURNS 5

In the following, we shortly write G(·; θ) or Gθ, instead of G(·; u+, u−, τ+, τ−), and for the
corresponding density we write gθ. Note that in this approach the volatilities only play
a subordinate role as part of the parameters τ+ and τ−. However, assuming that for the
innovations we have Var(εt) = 1, the volatilities can easily be regained from the equation
σ2(t) = Var(Rt).

3 Local likelihood estimation

For fitting our model to data we use the method of local likelihood estimation. In this
section, we first give a brief overview of its basic concept. Subsequently, based on a paper
by Aerts and Claeskens (1997), we investigate the asymptotics of these estimators, and we
provide a device for constructing approximate confidence intervals for the parameters. We
discuss how these ideas carry over to our model.

The basic concept. Consider a sample (x1, y1), . . . , (xn, yn). The data xi denote distinct
points of time in some interval [a, b]. These might either be fixed or given by a random
design. The corresponding yi are realizations of independent, real-valued random variables
Yi. Suppose that each Yi is distributed according to some pdf f(·, si), where the parameter
si ∈ �d is determined by a function θ : xi �→ θ(xi) = si. Assuming this parameter function θ

to be sufficiently smooth, each of its components θk can be approximated locally by a Taylor
polynomial of degree pk. Thus, for xi close to a fixed point x we have the approximation

(3.1) θk(xi) ≈
pk∑

j=0

θ
(j)
k (x)
j!

(xi − x)j ≡
pk∑

j=0

βkj(xi − x)j ,

where in this notation the dependence of βkj from x is omitted. For estimating the coeffi-
cients βkj of the local polynomials, we consider the local likelihood function

(3.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ln(β; h, x) =
n∑

i=1

log f

⎛
⎝yi,

p1∑
j=0

β1j(xi − x)j , . . . ,

pd∑
j=0

βdj(xi − x)j

⎞
⎠Kh(xi − x),

β = (βT
1 , . . . , βT

d )T = (β11, . . . , β1p1 , . . . , βd1, . . . , βdpd
)T .

Here K denotes a kernel, h is a bandwidth (or smoothing parameter), and Kh(·) = K(·/h)/h.
Usually K is a unimodal symmetric pdf, preferably with compact support. Maximizing
Ln(β; h, x) with respect to β yields the local likelihood estimates β̂kj . Consequently, we have
estimates θ̂

(j)
k (x) = j!β̂kj for the value of the parameter function in x and its derivatives,

respectively. For further information on local likelihood estimation and local polynomial
fitting cf. Aerts and Claeskens (1997), Fan et al. (1998), or Fan and Gijbels (1996).

Asymptotics. In the following, we assume the design points xi to be generated according
to xi = G−1

(
(i − 1)/(n − 1)

)
, with G(x) =

∫ x

−∞ fX(t)dt and a design density fX with
supp(fX) = [a, b]. Furthermore, we assume the kernel K to be a symmetric pdf with compact
support [−1, 1]. Aerts and Claeskens (1997) show that under some additional regularity
conditions the local likelihood estimators are consistent and asymptotically normal. (Mainly,
these regularity conditions are the classical conditions on the densities f(·, θ), needed for
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proving consistency and asymptotic normality of ML estimators; cf. Aerts and Claeskens
1997, conditions (R1)–(R6), for details.) More precisely, they show that

√
nh

{((
β̂1(x) − β�

1(x)
)T

Hp1 , . . . ,
(
β̂d(x) − β�

d(x)
)T

Hpd

)T

− 1√
nh

Bnh(x)
}

D−→ N (0,V(x)),
(3.3)

as n → ∞, with β�
k(x) = (β�

k1(x), . . . , β�
kpk

(x))T denoting the vector of the true coefficients
of the local polynomials, i.e. β�

kj(x) = θ
(j)
k (x)/j!, and employing the indexing given in

(3.2). The matrices Hpk
are diagonal matrices with entries h0, . . . , hpk , whereas the other

quantities depend in a rather complicated way on the true parameters θ
(j)
k (x), the kernel

K, the (log-)densities and its derivatives and on the design point x. Again, cf. Aerts and
Claeskens (1997) for details.

Confidence intervals. The results from the previous paragraph provide a device for
constructing approximate pointwise confidence intervals for the true coefficients of the local
polynomials. With eij denoting the vector with “1” as ij-entry and “0” elsewhere (i.e., we
have eT

ijβ = βij), from (3.3) we get

√
nh

{(
β̂ij(x) − β�

ij(x)
)
hj − 1√

nh
eT

ijBnh(x)
}

D−→ N (0, eT
ijV(x)eij).

Following the argumentation of Fan and Yao (2003), p. 243, we neglect the asymptotic bias
term. Hence, approximately, we have

L
(
β̂i0(x) − β�

i0(x)
) ≈ N

(
0,

1
nh

eT
i0V(x)ei0

)
.

Replacing the parameters θi(x) in the expression for the asymptotic covariance matrix V(x)

by the corresponding estimates θ̂i(x) we get an approximate covariance matrix V̂(x). Thus,
by [

β̂i0(x) − uα/2

(
V̂i0,i0(x)/(nh)

)1/2 ; β̂i0(x) + uα/2

(
V̂i0,i0(x)/(nh)

)1/2
]

we get an approximate confidence interval at the level 1 − α for the true parameter θi(x),
where uα/2 is the standard normal (1 − α/2)-quantile.

Applying the asymptotics to our model. For applying the above asymptotics to our
modelling approach, we have to consider some minor modifications to our model. After
centering the returns (cf. (2.1)), we are given observations {(t, Rt) : t = 1, . . . , n}. For the
purpose of asymptotic investigations, now we consider a rescaling of the time points by the
transformation

(3.4) s �→ s − 1
n − 1

=: s̃, 1 ≤ s ≤ n,

which maps the time points into the unit interval. These rescaled design points fulfill
the assumption on the points xi from the above paragraph on asymptotics with fX(x) =

�[0,1](x). The parameter function can be rescaled in the same way, setting θ̃(t̃) := θ(t).
Note that this transformation is only necessary for the application of the asymptotic results
and the computation of the confidence intervals. It has no effects on practical aspects of
the estimation. Therefore, when it is obvious that an assertion is correct for the “original”
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points of time (i.e. for t = 1, . . . , n) as well as for the rescaled ones (i.e. for the points t̃), for
ease of notation we often silently omit the notation for the rescaling. Especially, we do so
when considering the parameter function and the local polynomials.

In addition, we have to check whether the regularity conditions on the densities hold
for our model. Actually, this is the case for a suitable submodel, namely for the family
{Gθ : θ ∈ Θ}. Here the parameter space is defined as Θ := (u, u)2 × (τ , τ )2, with arbitrary
values 0 < u < u < 2/3 and 0 < τ < τ < ∞. The verification of the regularity conditions is
lengthy but quite standard. It is based upon showing diverse interchangeability conditions
for integration and differentiation of the densities and rough estimation inequalities for the
derivatives of the (log-)densities; it also uses the fact that Θ is compact. The complete
proof is given in Jönck (2005). Consequently, for estimations within this submodel we can
calculate approximate confidence intervals for the true parameters according to Section 3.
Since θ �→ (VarGθ)1/2 is differentiable in θ, an application of the Delta method yields
approximate confidence intervals for the volatilities, too.

4 Modelling the S&P 500 return series

In this section we fit our model to the returns of the closing prices of the S&P500 return
series from 2 January 1990 to 21 February 2002 (cf. Figure 1.1), which is a total of n = 3062

observations. We discuss the numerical results and check whether they fulfill the model
assumptions.

Fitting the model. We estimate the (rescaled) parameter function θ(x) for each of the
points x = x̃1, . . . , x̃n, with x̃i = (i − 1)/(n − 1), cf. equation (3.4). To this end, for each
such x the optimization problem

(4.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
β

Ln(β; h, x) under constraints: (β10(x), . . . , β40(x))T ∈ Θ,

⎛
⎝ p1∑

j=0

β1j(x̃i − x)j , . . . ,

p4∑
j=0

β4j(x̃i − x)j

⎞
⎠

T

∈ Θ, x̃i ∈ [x − h, x + h],

is solved, where Ln(β; h, x) is the local likelihood function defined by (3.2), employing the
densities {gθ : θ ∈ Θ}. For the kernel K we use the Epanechnikov kernel, which is given
by K(u) = 3/4(1 − u2)+. Using the notation from (3.2), the vector (β10(x), . . . , β40(x))T

corresponds to θ(x) = (u+(x), u−(x), τ+(x), τ−(x))T . For the computations we use the
fmincon routine implemented in Matlab (V.7). The meaning of the first constraint in (4.1)
is obvious, the second one ensures that all evaluations of the local polynomials lie in the
parameter space, otherwise Ln(β; h, x) is not defined. We take Θ as defined in Section 3,
with u = 10−2, u = 2/3, τ = 10−4 and τ = 5. The crucial point in the above optimization
procedure is the choice of an appropriate bandwidth h. This acts as a smoothing parameter
in nearly the same way as it does in ordinary nonparametric regression. For our computations
we take h = 0.030. We use local linear fits for all four paramters, i.e. p1 = · · · = p4 = 1.
It is preferable to use the same degree of adaption for all parameters, since the expression
for the asymptotic bias is essentially of an order of the smallest such polynomial degree. In
addition, the use of odd-degree polynomial fits reduces boundary effects. (For details see
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Aerts and Claeskens 1997.) Our choice of local linear fits takes account of both aspects and
at the same time keeps the number of optimization parameters to a minimum.

In addition, we use the normal approximation from Section 2 in the following way: if for
some x the local likelihood estimation yields an estimate û+(x) = u, we can assume the true
value u+(x) to be very close to zero, thus implying a very light right tail of the corresponding
return distribution L (Rt). According to the above ideas, then we can approximate the
right tail of the return distribution by that of a N (0, τ2

+/2)-distribution, and thus û+(x)

is assigned the value zero. Likewise we proceed if û−(x) = u. In case of either û+(x) or
û−(x) being zero, the conditions for the asymptotic results by Aerts and Claeskens (1997)
are violated. Therefore, in such cases we do not provide asymptotic confidence intervals for
any of the four paramters u+(x), u−(x), τ+(x) and τ−(x).

Numerical results. The estimates for the parameter functions are shown in Figure 4.1 to-
gether with the corresponding asymptotic 95%-confidence intervals (as derived in Section 3).
Apparently, the normal tail approximation is widely employed, and so it seems a valuable
tool to enhance the model’s ability of assessing light-tailed distributions. The picture on
the bottom shows the estimated annualized volatilities σ̂a(t) :=

√
250σ̂(t), where the σ̂’s

are computed as the standard deviations of the estimated distributions, the corresponding
confidence intervals result from the use of the Delta method.

From Figure 4.1 one can clearly see that for most points of time we have û+ < û−, i.e.
the left tails of the estimated distributions are heavier than the corresponding right tails.
This might reflect the well-known fact that in time series of stock returns the extremely
large negative returns are usually greater in absolute value than the extremely large positive
returns. Furthermore, the estimated distributions show some sort of symmetric behaviour
in the tails. For example, whenever the left tails of the distributions get heavier, i.e. û−
increases, the parameter function û+ also tends to increase and vice versa. Apparently,
such a symmetric behaviour can be observed in the estimated scale parameters τ̂+ and τ̂−,
too, where this symmetry seems even much more distinctive. Remember that we defined
τ±(t) = σ(t)v±(t). Thus, due to the symmetric behaviour of the scale parameters one might
try to simplify the model in such a way that only the volatility σ(t) is presumed a smooth
function and the parameters v+(t) and v−(t) are presumed global constants. However, it
turns out that the quotient τ̂+(t)/τ̂−(t) is strongly fluctuating with varying t and that the
confidence intervals for τ+(t)/τ−(t) (which can be derived easily from the use of the Delta
method) are nearly disjoint for many points of time.

The estimates û+ and û− also seem to exhibit a certain kind of periodicity, which ex-
presses through the fact that the periods between two consecutive points of maximum (and
minimum, respectively) are approximately of the same length. There is no explanation at
hand for this effect. It might also be some artefact caused by the choice of the relatively small
bandwidth h. Indeed, for larger bandwidths this “periodicity” appears much less distinct.

Figure 4.1 also shows the pointwise confidence intervals for the true parameters. Note
that we only provide confidence intervals for those points of time for which no use of the
normal approximation is made for either tail (see above). For u+ and u− the confidence
intervals are rather wide, in some cases they cover nearly all of the space (u, u). This,
together with the fact that the intervals overlap for many points of time could be evidence
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Figure 4.1. The estimated parameter functions û+, û−, τ̂+ and τ̂−, and the resulting
annualized volatilities σ̂a (solid lines) and the corresponding asymtptotic pointwise 95%-
confidence intervals, where applicable (dotted lines).

for the assumption that the fluctuations of the functions û+ and û− are artefacts and do not
reflect the behaviour of the true parameter functions. It might instead be worth thinking
about a globally constant modelling of u+ and u−, like Drees and Stărică (2002) do in their
approach.

The estimated annualized volatilities (Figure 4.1, bottom) resemble very much the corre-
sponding estimates from Drees and Stărică, concerning both, the oscillation behaviour and
the magnitude of the estimates (cf. Drees and Stărică 2002, Figure 3.2). Only the double-
peak in the middle of 1995 appears a bit strange, in particular, since the time series is very
calm during that period. We have no explanation for this feature. However, taking greater
values for the bandwidth h, it vanishes quickly, so it just might be some artefact. To prevent
such problems, the use of a local, data-driven bandwidth may be helpful.
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Assessment of the model. Summarizing so far, one can say that the local likelihood
estimators in our model, together with the normal tail approximation seem to yield rea-
sonable results for describing the development of the time series. Next we want to check
whether the model assumptions are really fulfilled. Of course, this also gives some answer
to the question of the goodness of our modelling approach. We have to check whether

• the (centered) returns are independent,

• the estimated distributions Gθ̂(t) are good approximations to the real distributions of
the returns, i.e. approximately we have Rt ∼ Gθ̂(t), and

• the estimated distributions Gθ̂(t) have approximately mean zero (i.e. the “centered”
returns Rt are really centered).

For this purpose we mainly use the same techniques as Drees and Stărică (2002). Further-
more, we check whether

• the asymptotic confidence intervals cover the true parameter with probability 0.95.

First we check whether the innovations or, equivalent, whether the centered returns
Rt are independent. This is one of the basic assumptions of our model. As the common
tests for independence always demand for a sample of identically distributed observations,
we first standardize the centered returns. Assuming the estimated distributions are good
approximations for the return distributions, i.e. we have approximately Rt ∼ Gθ̂(t), the
variables

(4.2) Vt := Φ−1
(
G(Rt; θ̂(t))

)
, t = 1, . . . , n,

—in the following referred to as standardized returns—should be standard normal, and thus
in case of independence of the returns should be Gaussian white noise. To check this, we
investigate the SACFs of the time series of standardized returns and of their absolute val-
ues; see Figure 4.2. For almost all lags both of the SACFs stay within the 95%-confidence
intervals, given by the dashed lines, thus strongly supporting the independence assumption.
In addition, Figure 4.2 shows the p-values of the Portmanteau tests for the corresponding
time series for the first 100 lags. While for the standardized returns the hypothesis of inde-
pendence is rejected for almost all lags at the 95%-level, the test supports the hypothesis of
uncorrelated absolute standardized returns for almost all lags. (For general information on
the confidence intervals or the Portmanteau test cf. Brockwell and Davis 1987, Section 7.2
and p. 300ff., respectively.) This surprising effect occurs in a similar form also in the original
model of Drees and Stărică (2002). To find an explanation for this effect, we consider the
SACFs of the returns and the absolute returns of the S&P500, respectively, which are given
in Figure 4.3: the SACF of the absolute returns exhibits some long range dependencies (Fig-
ure 4.3, right), which, according to Drees and Stărică, might reflect certain non-stationarities
within the second moment structure of the time series. They argue that the locally station-
ary modelling approach describes these non-stationarities quite well. Consequently, the
absolute standardized returns behave nearly like uncorrelated random variables, as can be
seen by the evaluations of the corresponding SACF and the Portmanteau test (Figure 4.2,
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Figure 4.2. The SACFs (left) and the p-values of the Portmanteau tests (right) for the first
100 lags of the standardized returns {Vt : t = 1, . . . , n} (top) and for the absolute values of
the standardized returns {|Vt| : t = 1, . . . , n} (bottom). The dashed lines in the plots on the
left represent the 95%-confidence intervals under the hypothesis of independence.

bottom). However, this does not necessarily hold true for the standardized returns them-
selves. Actually, there also might be some non-stationarities (for instance in the mean of
the time series), which mainly manifest through the SACF of the returns, and which are
not taken into account by our modelling approach. Because the standardization (4.2) itself
only changes the absolute values of the returns, but not their signs, the SACFs of both,
the returns (Figure 4.3, left) and the standardized returns (Figure 4.2, top left) do not dif-
fer very much, and thus our modelling approach cannot capture these effects, which might
be a reason for the negative outcome of the corresponding Portmanteau test. Neglecting
this flaw, we conclude that the standardized returns (and thus the returns) can—at least
approximately—be regarded as independent, in accordance to our model assumptions.

Next we check whether the estimated distributions Gθ̂(t) are good approximations for
the true distributions of the centered returns. That is, we test for the null hypothesis

Rt ∼ Gθ̂(t), t = 1, . . . , n.

If this holds true, then the standardized returns should be approximately standard normal.
This is clearly supported by the QQ-plot for the standardized returns, which is given in
Figure 4.4. To formally test the normality of the standardized returns, we employ the
Kolmogorov-Smirnov (KS) test and the Jarque-Bera (JB) and Shapiro-Wilk (SW) tests.
The latter ones are specially designed for testing normality; cf. Shapiro and Wilk (1965), and
Judge et al. (1988), respectively. (The Matlab implementations used for the SW and JB tests
are part of the UCSD GARCH Toolbox, available at http://econ.ucsd.edu/∼ksheppar;
we correctded some errors in the codes.) The high p-values of all three tests, given in the
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Figure 4.3. The SACFs of the S&P500 returns (left) and of their absolute values (right)
for the first 100 and 250 lags, respectively.
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Figure 4.4. QQ-Plot of the standardized returns {Vt : t = 1, . . . , n}.

first line of Table 4.1, indicate that the estimated distributions approximate the true return
distributions very well.

Finally, we address to the question if the estimated distributions Gθ̂(t) (approximately)
have mean zero, as postulated by the model. If so, according to the central limit theorem,
the statistic

Sn :=
∑n

t=1 Rt

(
∑n

t=1 σ̂2(t))1/2

should be approximately standard normal. The p-value of the corresponding two-sided
test is roughly equal to 1, and thus we accept the estimated distributions Gθ̂(t) as being
aproximately centered.

Our approach of evaluating the estimated model is not unproblematic, as it has two
major shortcomings: when testing for independence of the returns, we assume the estimated
distributions to be good approximations for the true return distributions. Whereas the
goodness of fit tests used for checking normality of the standardized returns presume the

Test Kolmogorov-Smirnov Jarque-Bera Shapiro-Wilk

p 0.897 0.336 0.265
pMC 0.794 0.824 0.756

Table 4.1. The p-values and Monte Carlo p-values for the KS, JB and SW tests for normality
of the standardized returns.
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returns to be independent. We adopt this approach, because (to the best of our knowledge)
there is no reasonable method for testing independence and the goodness of fit separately.
Consequently, the outcomes of the above evaluations should be interpreted carefully.

The second shortcoming of our approach concerns the p-values of the above goodness of
fit tests. What we did above, was computing the estimates θ̂(t) on the basis of the centered
returns and then applying the tests for normality on the standardized returns. These depend
on the estimates θ̂(t) and thus, again, on the centered returns (cf. (4.2)). So, actually, we use
the same data for estimating the model as we use for checking their goodness of fit. Hence,
the accuracy of the p-values seems questionable. Due to the high dependency on only one
single set of data, they may not be very accurate and there might be some need for adjusting
them. Therefor let us remind how the p-values are calculated for the case of the KS, JB and
SW tests: each of these tests is based on a test statistic, say T . It will reject the hypothesis
of standard normal Vt’s if the realization of T , denoted t, takes great values. The p-value is
then defined as p = P{T ≥ t}. Thus, we can redress the problem of an inaccurate p-value
by recalculating the law of T in consideration of the standardization (4.2) with Monte Carlo
simulations. To this end, we simulate J time series samples {R∗j

t : t = 1, . . . , n}, each
consisting of independent random variables

R∗j
t ∼ Gθ̂(t), t = 1, . . . , n, j = 1, . . . , J.

For each of these simulated samples we can now compute the likelihood estimates {θ̂∗j(t) :

t = 1, . . . , n} and the resulting standardized returns, given by V ∗j
t = Φ−1

(
G(R∗j

t ; θ̂∗j(t))
)
.

Consequently, we have J + 1 realizations of T given by

t = T (V1, . . . , Vn) and t∗j = T (V ∗j
1 , . . . , V ∗j

n ).

Then, from the empirical cdf FJ(·) = J−1
∑J

j=1 �{t∗j ≤ ·} we get an approximation for
the law of T under the assumption that the distributions of the centered returns are really
given by the family {Gθ̂(t) : t = 1, . . . , n}. Consequently, for the p-value we have as an
approximation the Monte Carlo p-value pMC = 1− FJ(t). (For more general information on
this Monte Carlo approach cf. Davison and Hinkley 2003, especially Chapter 4.)

We do this computationally intensive method for the KS, JB and SW tests with J = 1000

simulated times series. The results are given in the second line of Table 4.1. All three pMC-
values assert the good results from the “simple” tests, the Monte Carlo version of the JB
and SW tests, surprisingly, having even a higher p-value than their simple versions.

Finally we want to check whether the approximate confidence intervals actually cover
the true parameter with probability 0.95. Suppose that at time t neither û+(t) nor û−(t)

equals 0 or 2/3, such that we can construct confidence intervals for the true parameters,
according to Section 3. Again, we consider the simulated time series {R∗j

t : t = 1, . . . , n}
and the resulting local likelihood estimates {θ̂∗j(t) : t = 1, . . . , n}, j = 1, . . . , J . Assume
that from the estimates θ̂∗j(t) (i.e. the parameter estimates for time t resulting from the j-th
simulation) we can compute approximate confidence intervals for each of the four parameters
θ̂1(t), . . . , θ̂4(t). These may be denoted by I(

θ̂∗j
k (t)

)
, k = 1, . . . , 4. The number of all j for

which the construction of such confidence intervals is possible be denoted by Jt. Then the
relative frequencies #

{
j : θ̂k(t) ∈ I(

θ̂∗j
k (t)

)}
/Jt give an estimate for the covering probability

of the approximate confidence intervals.
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Figure 4.5. Relative frequencies of the initial paramter estimates θ̂k(t), k = 1, . . . , 4, to lie
in the simulated confidence intervals. Points of time t, for which in the orignial estimates
no confidence intervals were constructed, are assigned the value zero.

We compute these relative frequencies for all t with û+(t), û−(t) /∈ {0, 2/3}, using a total
of J = 1000 simulated time series. The results are depicted in Figure 4.5: for the parameters
u+, u−, τ+ and τ− the levels of the confidence intervals lie between 0.85 and 1.0 for almost
all points of time and thus do not differ too much from the 95%-level. However, there are
also some exceptions from this, e.g. shortly after the beginning of the year 2000, where the
estimated level for the confidence intervals of the parameter τ+ are very low (below 70%).
A simple explanation for this effect might be, that this is exactly the period during which
the estimated parameters τ̂+ are maximal, as can be seen in Figure 4.1. The estimates τ̂∗j

+ ,
which result from the simulated time series, in general take more moderate values, they
are smaller than τ̂+. Thus, the resulting simulated confidence intervals I(

τ̂∗j
+

)
cover the

parameter τ̂+ less often. For the annualized volatilities there are major differences between
the relative frequencies and the presumed 95%-level of the confidence intervals. Especially
the very low level shortly before 1996 is striking. This is exactly the period where there is the
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unexplainable double-peak of the volatilities (cf. Figure 4.1 and the comments thereon), and
thus should not be too surprising. Note that, although we have taken J = 1000, of course
the quantity Jt is less than that for all t, due to the fact that also during the simulations
the normal approximation for the tails is used. However, except for very few points of time,
we always have Jt ≥ 300.

5 Forecasting with local likelihood methods

We now want to provide an approach for forecasting future return distributions, the basic
idea of which is the same as in Drees and Stărică (2002). Subsequently, we provide numerical
results for one-day-ahead distributional forecasts, and discuss them.

Distributional forecasts in the regression model. Assume we are given the data
available up to time t—which we interprete as the present—and we try to forecast the
distribution of the next d-day return Xt,d =

∑d
i=1 Xt+i. In our model this is given by

(5.1)

⎧⎪⎪⎨
⎪⎪⎩

Xt,d = dµ +
d∑

s=1

Rt+s,

Rt+s ∼ Gθ(t+s), Rt+s independent, s = 1, . . . , d.

Thus, we have to find reasonable estimates for the future parameter values θ(t + s) that are
based only on the data available at time t. Presuming the forecasting horizon d is not too
large, an extrapolation of the Taylor polynomial in (3.1)—using the notation from Section 3,
especially the vector notation from (3.2)—yields

(5.2) θk(t + s) ≈
pk∑

j=0

θ
(j)
k (t)
j!

sj ≡
pk∑

j=0

βkj(t)sj , s = 1, . . . , d, k = 1, . . . , 4.

The unknown coefficients βkj(t) can be estimated by local likelihood methods. Therefor we
employ a one-sided kernel, i.e. we use K(·)�{· ≤ 0} instead of K(·). Again, the estimations
are based on the centered returns, which in the forecasting context are given by R̃s = Xs−Xt,
s ≤ t, where Xt = 1/t

∑t
i=1 Xi. (Note that these centered returns have to be re-computed

for different values of t.) These two modifications assure that the resulting local likelihood
estimates β̂kj(t) only depend on the information available at time t. Plugging these initial
estimates into (5.2), we get forecasts for the future parameters by

(5.3) θ̂k,t(t + s) =
pk∑

j=0

β̂kj(t)sj , s = 1, . . . , d, k = 1, . . . , 4.

Here and in the following the additional subscript t shall emphasize that the parameter
forecast is only based on the data up to time t. Instead of (5.3), one might also take

(5.4) θ̂k,t(t + s) = β̂k0(t), s = 1, . . . , d, k = 1, . . . , 4,

thus neglecting any trend components, which express through the components β̂kj(t), j > 0.
Replacing the unknown quantities µ and θ(t + s) in (5.1) by Xt and θ̂t(t + s) (either given
by (5.3) or by (5.4)), the law of

(5.5) X̃t,d = dXt +
d∑

s=1

R̃t+s, R̃t+s ∼ Gθ̂t(t+s),
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provides a distributional forecast for Xt,d. In the following, the correspondig cdf’s of Xt,d

and X̃t,d are denoted Ft,d and F̃t,d, respectively.
The asymptotic results for the local likelihood estimates presented in Section 3 act on the

assumption of a symmetric kernel, and hence seem not suitable for our forecasting purpose.
However, they can easily be carried over to our forecasting context. To this end, for each
fixed t we interpret t as the right end point of the interval [1, t] and we do the rescaling
proposed in (3.4) with n replaced by t. The bandwidth is rescaled in a similiar way, taking
h̃ = h ·n/t for the estimation of θ(t), with h fixed. The rescalation of the bandwidth ensures
that the number of observations used for the estimation does not change with varying t.
With this interpretation of t as right end point, it makes no difference if we use the above
one-sided kernel or its two-sided version, because there are no observations at times larger
than t that could have influence on the estimate. Consequently, the asymptotics, which hold
true for the right end point t when using a two-sided kernel, do so for the use of the one-sided
kernel as well. That is, the estimates β̂(t) are consistent and asymptotically normal, which
enables us to provide approximate confidence intervals for the true parameters (as proposed
in Section 3).

We apply the above forecasting approach to the S&P500 daily returns, and we do one-
day-ahead distributional forecasts, i.e. we take d = 1. For the local likelihood estimations
we take h = 0.095, which is then rescaled for each t, as described above. This choice is
essentially based on trial and error. The use of a bandwidth larger than that for the fitting
of the model takes account of the plausible idea that for the prediction of future parameters
a larger degree of smoothing is needed. Several computations are done, each using a different
degree of local polynomial fitting, namely:

(a) All four parameters are fitted by local constants, i.e. p1 = · · · = p4 = 0.

(b) u+ and u− are fitted by local constants, τ+ and τ− are fitted locally linear, i.e. p1 =

p3 = 0, p2 = p4 = 1.

(c) Local linear fits are used for each of the four parameters, i.e. p1 = · · · = p4 = 1.

For the estimations we use the one-sided version of the Epanechnikov kernel. Otherwise,
the same setting—i.e. same parameter space, optimization procedure, etc.—as in the simple
model fitting approach is used (cf. Section 4). Due to the use of a one-sided kernel and the
specific choice of bandwidth we do not compute local likelihood estimates for t ≤ 300.

Numerical results for the forecasts. Figure 5.1 shows the local likelihood estimates
θ̂k,t(t) for t = 301, . . . , 3062, and the corresponding 95%-confidence intervals (where appli-
cable) for the case of local constant fits of all four parameters (case (a)). The estimated
functions, and thus the estimated distributions, seem to exhibit the same symmetric be-
haviour that was already discussed in Section 4. Furthermore, for almost all points of time,
the left tails—i.e. the tails modelling the losses—are heavier than the right tails, a desirable
property, as mentioned above. Despite the much larger bandwidth, the estimated functions
in Figure 5.1 exhibit greater fluctuations on a small time scale than the corresponding es-
timates for the fitting of the model (Figure 4.1). This is due to the use of the one-sided
kernel. We omit plots of the estimated parameter functions for cases (b) and (c): in case
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Figure 5.1. The estimated parameter functions û+, û−, τ̂+ and τ̂−, and the resulting
annualized volatilities σ̂a for the case of local constant fits (case (a)). The estimated functions
are depicted in solid lines, the corresponding approximate pointwise 95%-confidence intervals
(where applicable) are depicted in dotted lines.

(b) the estimated functions behave very much like those depicted in Figure 5.1, in case (c)
the estimated functions look similar to those from Figure 4.1, however they are much more
wiggly, and the confidence intervals are wider.

For the prediction of the law of the one-day-ahead returns Xt,1 we consider five different
forecasting approaches. These differ with respect to the degrees of the local polynomials
that are used for the initial likelihood estimations (represented by one of the above cases
(a)–(c)), and with respect to the kind of extrapolation that is used for predicting future
distribution parameters (either (5.3) or (5.4)):

F1: The initial local likelihood estimates are computed with local constant fits for all
parameters. In this case (5.3) and (5.4) are the same.

F2: The initial estimates are computed by method (b), the parameter forecasts are com-
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puted according to (5.3).

F3: Same as F2, but with parameter forecasts according to (5.4).

F4: For the initial likelihood estimates local linear fits are used for all parameters, the
parameter forecasts are given by (5.3).

F5: Same as F4, but with parameter forecasts according to (5.4).

We now want to analyse the quality of the distributional forecasts provided by the random
variables X̃t,1. Essentially, the analysis is based on the same ideas and testing devices that
we used for the assessments of the quality of the model fitting in Section 4. Suppose for
a moment that the forecasting distributions L (X̃t,1) perfectly match the laws of the true
future returns L (Xt,1), i.e. for the corresponding cdf’s we have F̃t,1(x) = Ft,1(x) for all
x ∈ �. Then the variables

(5.6) Zt,1 := Φ−1
(
F̃t,1(Xt,1)

)
, t = 301, . . . , 3061,

—in the following referred to as standardized forecasts—should be i.i.d. standard normal.
To check whether this holds true, we have to test for both, independence and normality of
the standardized forecasts. We do so for each of the forecasting methods F1–F5.

In a first step to check for the normality of the standardized forecasts, we apply the
goodness of fit tests (KS, JB ans SW tests) to the time series {Zt,1 : t = 301, . . . , 3061}.
The corresponding p-values for each of the five forecasting approaches are given in Table 5.1.
Considering only the p-values resulting from the simple versions of the three goodness of
fit tests does not allow for an answer to the question whether the standardized forecasts
are (at least approximately) standard normal: as can be seen from the table, the KS test
supports the hypothesis of normality of the standardized forecasts for all five forecasting
approaches, whereas the JB and SW tests nearly always reject the hypothesis. This conflict
might be a consequence of the standardization (5.6) and its effects on the values of the
different test statistics (compare the discussion in Section 4), thus indicating the inadequacy
of these simple goodness of fit tests. For this reason, again, we consider Monte Carlo
tests. The basic idea is the same as described in Section 4: we simulate J time series
{R̃∗j

t : t = 301, . . . , 3062}, with independently simulated random variables R̃∗j
t ∼ Gθ̂t(t)

.
Based on these simulated time series we re-compute the initial local likelihood estimates
{β̂∗j(t) : t = 601, . . . , 3062}, and we compute the corresponding forecasting parameters
θ̂∗j

t (t + 1) and the simulated standardized forecasts {Z∗j
t,1 : t = 601, . . . , 3061}. Repeating

these operations for j = 1, . . . , J , and computing the KS, JB and SW test statistics for
these simulated standardized forecasts, finally yields approximate Monte Carlo p-values.
We do these Monte Carlo tests for each of the forecasting approaches F1–F5, where each
of the computed pMC-values is based on J = 1000 simulated time series. The results are
given in Table 5.1, too. Without exception, the tests strongly support the hypothesis of
normality of the standardized forecasts, and thus the idea of a good forecasting. Apparently,
there are only small differences in the pMC-values for Methods F2 and F3, and F4 and F5,
respectively. Thus, for the quality of the parameter forecasts it seems—at least for one-day-
ahead distributional forecasts—not of great importance whether these incorporate a trend
component or not.
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Forecasting method Test Kolmogorov-Smirnov Jarque-Bera Shapiro-Wilk

p 0.969 0.003 0.054
F1

pMC 0.902 0.656 0.750

p 0.236 0.000 0.000
F2

pMC 0.927 0.322 0.317

p 0.223 0.000 0.000
F3

pMC 0.901 0.321 0.316

p 0.235 0.000 0.000
F4

pMC 0.906 0.703 0.744

p 0.244 0.000 0.000
F5

pMC 0.902 0.701 0.741

Table 5.1. The p-values and Monte Carlo p-values for the KS, JB and SW tests for the
standardized forecasts resulting from the five forecasting methods F1–F5. The Monte Carlo
p-values are based on 1000 simulated time series.
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Figure 5.2. QQ-plots for the standardized forecasts {Zt,1 : t = 301, . . . , 3061} resulting
from the forecasting approaches F1 (left) and F5 (right).

Next we consider the QQ-plots of the standardized forecasts. For the cases F1 and
F5 these are depicted in Figure 5.2. (The QQ-plots for the standardized forecasts based
on the forecasting methods F2–F4 look very similar to that of F5, so we omit them.) As
can be seen from the figure, the data roughly fit the main diagonal, thus underpinning the
normality hypothesis for the standardized forecasts. Solely in the tails there seem to be some
deviations, especially when considering the standardized forecasts resulting from method F5
(Figure 5.2, right).

Altogether, taking into account both the QQ-plots and the results of the Monte Carlo
goodness of fit tests, the data seem not to directly contradict the hypothesis of normality of
the standardized forecasts—regardless of which forecasting approach F1–F5 is considered.
Thus, at least approximately the standardized forecasts can be considered normal. This
supports the assumption that the distributional one-day-ahead forecasts F̃t,1 are reasonable
approximations for the true distributions Ft,1.

It remains to investigate the dependence structure of the standardized forecasts. To
this end, we consider the SACFs of the time series {Zt,1} and {|Zt,1|}. For the forecasting
approach F1 these are depicted examplarily in Figure 5.3. The corresponding SACFs for the
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Figure 5.3. The SACFs of the standardized forecasts {Zt,1 : t = 301, . . . , 3061} (left) and
of the absolute values {|Zt,1| : t = 301, . . . , 3061} (right), each for the first 100 lags. The
standardized forecasts are based on the forecasting approach F1. The dashed lines represent
the 95%-confidence intervals.

standardized forecasts based on the other forecasting approaches look very similar to the
ones showed in Figure 5.3 and thus are omitted. Under the assumption of independence of
the standardized forecasts, the absolute values of both SACFs should be very small for all
lags. The SACF of the standardized forecasts {Zt,1} clearly exhibits such a behaviour and
thus might be evidence for the independence assumption to be true. However, the SACF
of the time series {|Zt,1|} clearly seems to differ from that. For about the first 30 lags the
SACF exceeds the upper 95%-confidence bound. In addition, the Portmanteau tests for
both, the standardized forecasts as well as for their absolute values, reject the hypothesis
of independence for almost all lags. The corresponding p-value plots look exactly the same
as the top right image in Figure 4.2, and thus are omitted. (The statements just made also
hold true for all of the other forecasting approaches F2–F5.) Thus, the hypothesis of the
standardized forecasts to be independent seems a bit questionable.

Forecasting over longer horizons. Of course the forecasting approach that we used
above can also be used for larger forecasting horizons, say d = 20 or d = 40. Drees and
Stărică (2002) do such examinations. However, with a larger forecasting horizon there
occur several difficulties: one major problem is that the distributions of the forecasting
variables X̃t,d cannot be described in a closed form. Hence, simulations are needed to find
good approximations for the convolution given in (5.5). Furthermore, the variables Xt,d

are not independent. Even in case of the returns being independent—which is a somewhat
critical assumption, as we have seen in the above examinations—the forecasting variables
form a (d − 1)-dependent sequence of random variables. And the same holds true for the
corresponding standardized d-day forecasts Zt,d = Φ−1

(
F̃t,d(Xt,d)

)
. Hence, the basis for an

application of the goodness of fit tests is clearly violated. (Remember that this was already
critical for the one-day-ahead forecasts!) On the other hand Monte Carlo tests, like we did
them above, are computationally way too expensive, because of the additional simulations
needed for computing the distributions of the variables Xt,d. Hence, an assessment of the
forecasts becomes a difficult task. For these reasons we only consider one-day-ahead forecasts
in this paper.
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6 Concluding remarks

Based on a work of Drees and Stărică (2002), we considered a simple regression type model
for stock returns. The innovations were modelled by four parameter asymmetric distribu-
tions, and the parameters were modelled as smooth, deterministic functions of time. In
addition, we considered an appropriate normal approximation for the tails, enabling the
model to adapt to both, heavy-tailed as well as light-tailed return distributions. By the
example of the S&P500 daily returns, observed over a period of twelve years, the principle
of local likelihood estimation (in connection with local linear fits) prove to be a reasonable
method for fitting our model to real-life data. In addition, approximate confidence inter-
vals for the true parameters could be given. The assessment of the model via the (Monte
Carlo) KS, JB and SW tests argued for a good fitting of our estimated model to the given
data. Solely the assumption of independence of the innovations seemed somewhat critical:
although the investigation of the SACFs of the (standardized) returns and their absolute val-
ues supported the hypothesis of independent innovations, the outcome of the Portmanteau
tests partly spoke against that. We also considered a simple device for forecasting future re-
turn distributions, and we did one-day-ahead distributional forecasts, using local likelihood
estimators with several forecasting approaches. Actually, an evaluation of these estimates
pointed out some minor flaws, concerning the independence assumption of the returns and
the results of the simple versions of the goodness of fit tests. However, the results of the
Monte Carlo tests as well as the QQ-plots for the standardized forecasts clearly argued for
our modelling approach to yield reasonable distributional forecasts.

Summarizing, one can say that our simple modelling approach, in connection with the
local likelihood estimators, seems to succeed in describing financial time series and giving
reasonable one-day-ahead forecasts. The results clearly underpin the adequacy of the idea
of a local modelling approach.
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