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Abstract

We consider an extended version of a model for the joint tail distribution of a bivari-
ate random vector proposed by Ledford and Tawn (1997), which essentially assumes
an asymptotic power scaling law for the probability that both components of the vec-
tor are jointly large. First it is illustrated that classical multivariate extreme value
theory does not provide suitable estimators of the probability of jointly extreme
events in the case of asymptotic independence. Then we introduce the Extended
Ledford & Tawn Model and discuss how to fit the model. Since the estimators of
the model parameters rely on the aforementioned scaling law, it is crucial to check
this model assumption. To this end, we devise a graphical tool that analyzes the
differences between certain empirical probabilities and model based estimates of
the same probabilities. The asymptotic normality of these differences allow the con-
struction of statistical tests for the model assumption. The results are applied to
claims of a Danish fire insurance and to medical claims from US health insurances.

Key words: asymptotic normality; bivariate tail estimation; dependent
catastrophic risks; extreme value theory; model validation

1 Introduction

Modeling insurance claim sizes often requires to consider small and medium
sized claims on the one hand, and large claims on the other hand separately.
The essential reason is that usually (parametric) models that fit the bulk of the
data well do not accurately describe the behavior of the very large claims. Here
univariate extreme value theory (EVT) offers models and estimators for the
upper tail of the claim size distribution. To this end, denote the distribution
function (d.f.) of the claim sizes by F1. Then it can be shown that the only
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possible limits of the conditional d.f. of the suitably standardized claims size
X given that it exceeds an increasing threshold t, i.e.

P

(
X − t

a(t)
≤ x

∣∣∣∣X > t

)
= 1 − 1 − F1(t + a(t)x)

1 − F1(t)
−→ Hγ(x) (1)

as P{X > t} → 0, are the generalized Pareto distributions (GPD) with d.f.

Hγ(x) = 1 − (1 + γx)−1/γ if 1 + γx > 0. (2)

Here, γ ∈ R denotes the so-called extreme value index and a(t) > 0 is a
normalizing constant depending on the threshold t. Therefore, these GPD
with additional location and scale parameters define a natural model for the
upper tail of the claim size distribution. See the monograph by Embrechts et
al. (1997) for an illuminative introduction to EVT and tail modeling (Sections
3.4 and 6.5 for GPD models) and their applications to risk management.

Most critical for an insurance company is the case of a heavy-tailed claim size
d.f. F1, i.e. when γ is positive. A necessary and sufficient condition for this
case is the regular variation of the survival function 1 − F1 with index −1/γ,
i.e.

lim
t→∞

1 − F1(tx)

1 − F1(t)
= x−1/γ , x > 0, (3)

which is the same as (1) with a(t) = γt and x replaced with 1 + γx. Then
necessarily all moments of the claim size distribution up to the order 1/γ
(exclusively) are finite, while the moments of order larger than 1/γ do not
exist. Typical examples of such survival functions behave (asymptotically for
large claim sizes x) as x−1/γ or x−1/γ logρ x for some ρ ∈ R. (See Embrechts
et al. (1997), Table 3.4.2, for explicit examples.)

However, univariate EVT and tail models do not suffice if a risk manager has
to assess the joint exposure to extreme risks in two different lines of business.
Suppose that the claim sizes of one customer in these lines of business are
described by a bivariate random vector (X, Y ). Then it is not sufficient to
model just the upper tails of the marginal d.f.s of X and Y , because there
might be a non-negligible dependence between the two insured risks. Indeed, if
one assumes independence and therefore calculates the probability of a jointly
extreme event like

p := P{X > u1, Y > u2} (4)

as P{X > u1}P{Y > u2}, then one underestimates the risk if the two claim
sizes are actually positively dependent; see e.g. the results in Section 5. In
particular, this is to be expected when the insured risks in the different lines
of business are exposed to the same physical cause of damage like storms
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in motor insurance and residential building insurance, or fire in residential
building insurance and household insurance. However, it is worth mentioning
that a non-negligible dependence between the claim sizes may also occur when
there is no obvious physical mechanism causing the damages in both lines of
business.

A very simple measure of the dependence between the claim sizes is the corre-
lation between X and Y . However, the correlation does not help to determine
probabilities of type (4). Moreover, a single figure (like the correlation) cannot
capture all essential features of a usually quite complex dependence structure.
Indeed, it often leads to quite misleading interpretations; see e.g. Embrechts
et al. (2002) for examples.

To analyze the full dependence structure separately from the marginal distri-
butions, one often considers the so-called copula, i.e., the bivariate d.f. of the
claim sizes after standardization of the marginals to uniform random variables.
More precisely, let F denote the bivariate d.f. of (X, Y ) and F1(x) := F (x,∞)
and F2(y) := F (∞, y) the marginal d.f.s of X and Y , respectively, with gen-
eralized inverse functions (quantile functions) F←i , i = 1, 2. In the rest of this
section, for simplicity, suppose that F1 and F2 are continuous. Then the copula
C pertaining to F is given by

C(u, v) := F (F←1 (u), F←2 (v)) = P{Ū ≤ u, V̄ ≤ v}, u, v ∈ [0, 1], (5)

where Ū := F1(X) and V̄ := F2(Y ) are uniform random variables.

Recently, a large variety of parametric families of copulas (like t-copulas or
Clayton copulas) have been proposed as models for the dependence structure
between different financial risks (see McNeil et al. (2005), Chapter 5). How-
ever, as mentioned above, the bulk of small and medium claims often show a
different stochastic behavior than the extreme claims. This difference is not
restricted to the marginal distributions, but may also become manifest in the
dependence structure. Since, in most instances, no parametric copula can be
selected on the basis of physical reasons, it seems advisable to use more flexible
models for the dependence structure between extreme claims in different lines
of business. (For a detailed discussion of the drawbacks of parametric copula
modeling in extreme value theory see Mikosch (2005).)

Quite flexible dependence models for extremes are offered by the classical
multivariate EVT, as presented in Chapter 5 of Resnick (1987) or Chapter 8
of Beirlant et al. (2004), where a certain regularity condition on the probability
that at least one standardized claim size is large is assumed. To this end, let
U := 1 − Ū = 1 − F1(X) and V := 1 − V̄ = 1 − F2(Y ), and define the tail
dependence function D by

D(u, v) = P{U < u or V < v} = 1 − C(1 − u, 1 − v), u, v ∈ [0, 1].
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Then it is assumed that t−1D(tx, ty) converges to a non-degenerate limiting
function:

lim
t↓0

t−1D(tx, ty) = �(x, y), x, y ≥ 0 (6)

(see e.g. Beirlant et al. (2004), Section 8.3.2). Since then the so-called stable
tail dependence function � is necessarily homogeneous of order 1, i.e. �(tx, ty) =
t�(x, y), according to (6) one may approximate D(u, v) by �(u, v) for small u
and v. Hence one may construct an estimator for the probability (4) from
estimators of the marginal d.f.s and an estimator of � using the approximation

p = P{X > u1} + P{Y > u2} − P{X > u1 or Y > u2}
≈ 1 − F1(u1) + 1 − F2(u2) − �(1 − F1(u1), 1 − F2(u2)). (7)

Unfortunately, this approach fails if X and Y are asymptotically independent
(or tail independent), i.e. if the probability of a joint occurrence of large values
of X (i.e., small values of U) and large values of Y (i.e., small values of V )
vanishes asymptotically in the sense that

P (U < t | V < t) = t−1P{U < t and V < t} t↓0−→ 0. (8)

For, in this case,

�(x, y)= lim
t↓0

t−1 (P{U < tx} + P{V < ty} − P{U < tx and V < ty})
=x + y,

and thus (7) reads as p ≈ 0, which is too crude an approximation to be
useful for estimating p. To overcome this problem, Ledford and Tawn (1997)
proposed a model to specify the speed of convergence in (8).

The paper is organized as follows. Section 2 introduces a model which imple-
ments the aforementioned idea and slightly extends the approach by Ledford
and Tawn (1997). The scaling law which is central to this model is established.
In Section 3 we briefly explain how to fit the model. Moreover, an estimator of
the probability that both components X and Y are large is presented. Section
4 contains the main result about the asymptotic normality of certain statis-
tics, which measure the deviations from this scaling law. Based on this result,
we suggest a method to validate the model. The applicability of this tool is
demonstrated by the examples of claims of a Danish fire insurance, and of
medical claims from US health insurances. All proofs are deferred to the final
Section 6.
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2 The Extended Ledford & Tawn Model

Throughout the paper, for simplicity, we assume that the marginal d.f.s Fi

are continuous on [ξi,∞) for some ξi < F←i (1), i = 1, 2. Hence the d.f.s of
U = 1 − F1(X) and V = 1 − F2(Y ) are equal to the uniform d.f. on a small
neighborhood of 0.

We consider an extension of the model by Ledford and Tawn (1997), intro-
duced by Draisma et al. (2004). Instead of the original condition supposed
in the latter paper, however, the following weaker assumption, mentioned in
Remark 2.1 of Draisma et al. (2004), is sufficient for our purposes.

2.1 Condition.

P{U < tx, V < ty}
P{U < t, V < t} − c(x, y) = O(q1(t)) (9)

as t ↓ 0, for all x, y ≥ 0 and uniformly on {(x, y)|max(x, y) = 1}. Here c is
some non-degenerate function and q1 a positive function that tends to 0 as
t ↓ 0 and that is regularly varying at 0 with some index τ ≥ 0, i.e.

lim
t↓0

q1(tx)

q1(t)
= xτ .

	

For x, y ∈ [0, 1], Condition (9) may be interpreted as the convergence of the
conditional d.f. P (U < tx, V < ty | U < t, V < t) to the limiting d.f. c.
Hence, it is a natural analog to the univariate extreme value condition (1).
Essentially, relation (9) is a bivariate regular variation condition (see Resnick
(1987), (5.32)) for the so-called survival copula Q(x, y) := P{U < x, V < y} =
x + y − D(x, y), where D denotes the tail dependence function.

A first consequence of (9) is c(1, 1) = 1. Moreover, choosing x = y, one obtains
that the function q(t) := P{U < t, V < t} is regularly varying at 0, i.e.

lim
t↓0

q(tx)

q(t)
= x1/η

for some η, which must belong to (0, 1] because q(t) ≤ P{U < t} = t for
sufficiently small t > 0. Note that by the regular variation of q

5



c(tx, ty)= lim
s↓0

P{U < stx, V < sty}
P{U < st, V < st} · P{U < st, V < st}

P{U < s, V < s}
= c(x, y) · lim

s↓0
q(st)

q(s)

= t1/ηc(x, y) (10)

for all t, x, y ≥ 0, i.e. c is homogeneous of order 1/η.

Note that P (U < t | V < t) = t−1q(t) is regularly varying with index 1/η − 1.
Hence, η measures the speed of convergence in (8) and is therefore called
coefficient of tail dependence. If η < 1, then limt↓0 t−1q(t) = 0, i.e. U and V
(and thus X and Y ) are asymptotically independent. Conversely, asymptotic
dependence holds if η = 1 and t−1q(t) converges to some l > 0 as t ↓ 0. If U
and V are exactly independent, then (9) holds with η = 1/2, c(x, y) = xy and
q1 ≡ 0. Loosely speaking, the cases η ∈ (0, 1/2) and η ∈ (1/2, 1) correspond to
asymptotically vanishing negative dependence and to asymptotically vanishing
positive dependence, respectively.

Next we will reinterpret the central Condition 2.1 as a scaling law. Note that
(9) and the homogeneity of c imply

P{U < stx, V < sty}
P{U < t, V < t} = c(sx, sy) + O(q1(t)) = s1/ηc(x, y) + O(q1(t))

for x, y ≥ 0. Thus, again by (9)

lim
t↓0

P{U < stx, V < sty}
P{U < tx, V < ty} = s1/η. (11)

More generally, for a bounded measurable set B ⊂ [0, 1]2 one has

lim
t↓0

P{(U, V ) ∈ stB}
P{(U, V ) ∈ tB} = s1/η,

provided that the measure with d.f. c assigns positive mass to B and has no
mass on the boundary of B.

Thus, in this extension of the Ledford & Tawn Model, the approximative
scaling law P{(U, V ) ∈ sA}/P{(U, V ) ∈ A} ≈ s1/η holds for suitable sets
A ⊂ [0, 1]2 nearby the origin. This means that contracting a set A ⊂ [0, 1]2 by
a contraction factor s ∈ (0, 1] leads to a decrease of the pertaining probability
by factor s1/η. Figure 1 illustrates the scaling law at work.

This scaling law will be the basis for the test of the model assumptions pro-
posed in Section 4.
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Fig. 1. The scaling law assumed by the model. The ratio of the probabilities of the
events sA and A is supposed to be approximately equal to s1/η.

3 Model Fitting

In this Section we briefly explain how to fit the Extended Ledford & Tawn
Model to data. Section 3.1 is essentially a review of some results about (asymp-
totic) properties of an estimator for the coefficient of tail dependence η. Sec-
tion 3.2 introduces a simple new estimator for c(x, y) and proves its asymptotic
normality. In Section 3.3 we discuss estimators for the probability of a jointly
large event p = P{X > u1, Y > u2}. As Sections 3.1 and 3.3 mainly summa-
rize results of Sections 2 and 3 of Draisma et al. (2004), refer to this article
for the details.

3.1 Estimation of the Coefficient of Tail Dependence

The asymptotic scaling law (11) reveals that the estimation of η is a crucial
step if we want to estimate p, see also Section 3.3. We will relate this problem
to the estimation of the extreme value index in a generalized Pareto model.

Let {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} be an i.i.d. sample, and denote by F1 and
F2 the marginal d.f.s of Xi and Yi, i = 1, . . . , n, respectively. As Draisma et
al. (2004), we consider an estimator for η based on the random variables

Ti := min
(

1

Ui
,

1

Vi

)
,

where Ui := 1 − F1(Xi) and Vi := 1 − F2(Yi), i = 1, . . . , n, respectively. The
d.f. FT of Ti satisfies 1 − FT (t) = q(1/t). Hence, the survival function 1 − FT
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is regularly varying with index −1/η and we are in the situation of (3). In
this setting, a popular estimator for the extreme value index η is the Hill
estimator m−1∑m

j=1 log(Tn−j+1:n/Tn−m:n), where Ti:n, i = 1, . . . , n, denote the
order statistics pertaining to Ti, i = 1, . . . , n. This estimator possesses good
asymptotic properties, see Section 6.4 of Embrechts et al. (1997).

Since the marginal d.f.s F1 and F2 are unknown and hence the random vari-
ables Ti cannot be observed, we replace Ui and Vi by empirical counterparts.
To avoid division by 0, let Ûi := 1 − RX

i /(n + 1) and V̂i := 1 − RY
i /(n + 1),

where RX
i and RY

i denote the ranks of Xi and Yi among (X1, X2, . . . , Xn) and

(Y1, Y2, . . . , Yn), respectively. Further, let T
(n)
i := min(1/Ûi, 1/V̂i), i = 1, . . . , n,

and denote by T
(n)
i:n , i = 1, . . . , n, the pertaining order statistics. In analogy to

the above estimator for η, we define the Hill estimator

η̂n :=
1

m

m∑
j=1

log
T

(n)
n−j+1:n

T
(n)
n−m:n

, (12)

which also possesses good asymptotic properties, reviewed below. Here, m =
mn is an intermediate sequence (i.e. m → ∞ and m/n → 0 as n → ∞). For
an appropriate choice of m in applications see the comments and references
given in Section 5.

We now give a short summary of the asymptotic properties of η̂n including
confidence intervals for η and a test of the hypothesis η = 1. The results
are taken from Theorems 2.1 and 2.2 and Section 4 of Draisma et al. (2004).
Suppose that l := limt↓0 q(t)/t and the partial derivatives cx := ∂c/∂x and
cy := ∂c/∂y of c exist. Assuming further that m tends to ∞ not too fast such
that

√
mq1(q

←(m/n)) → 0, one can prove that
√

m(η̂n − η) converges to a
normal distribution N (0, σ2

η̂n
) as n → ∞, where

σ2
η̂n

= η2 (1 − l) (1 − 2lcx(1, 1)cy(1, 1)) . (13)

Note that l is precisely the limit of left hand side of (8) and that σ2
η̂n

= η2 if
l = 0, i.e. iff U and V are asymptotically independent. Note further that σ2

η̂n
≤

η2 ≤ 1 is always true, since l ∈ [0, 1]. Let l̂ := mT
(n)
n−m:n/n, denote by T

(n,u)
i:n ,

i = 1, . . . , n, the order statistics pertaining to T
(n,u)
i := min((1 + u)/Ûi, 1/V̂i),

i = 1, . . . , n, and define ĉx(1, 1) := k̂5/4(T
(n,k̂−1/4)
n−m:n − T

(n)
n−m:n)/n with k̂ := m/l̂.

Define ĉy(1, 1) analogously to ĉx(1, 1), with the roles of Ûi and V̂i interchanged.
Then, the estimator

σ̂2
η̂n

:= η̂2
n

(
1 − l̂

) (
1 − 2l̂ĉx(1, 1)ĉy(1, 1)

)
(14)

is consistent for σ2
η̂n

for all η ∈ (0, 1]. Thus,

[
η̂n − m−1/2σ̂η̂nΦ←(1 − α/2), η̂n + m−1/2σ̂η̂nΦ←(1 − α/2)

]
, (15)
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where Φ← is the quantile function of a standard normal distribution, is a two-
sided confidence interval for η with approximate confidence level 1 − α. An
analogous one-sided statistical test rejects the null hypothesis η = 1, if

√
m (1 − η̂n)

σ̂η̂n

> Φ←(1 − α). (16)

3.2 Estimation of c

From (9), for sufficiently small r,

c(x, y) ≈ P {U < rx, V < ry}
P {U < r, V < r} .

Similar as above, we will estimate this probability by an empirical counter-
part based on the rank standardized approximations Ûi and V̂i to Ui and Vi,
respectively.

3.1 Theorem. Assume that (9) holds with asymptotically independent ran-
dom variables U and V and with a function c that has first order partial
derivatives. Suppose that r → 0 such that m̃ := nq(r) satisfies

√
m̃ q1(r) → 0

as n → ∞. Then

√
m̃

⎛
⎜⎜⎜⎜⎜⎝

n∑
i=1

1{
Ûi < rx, V̂i < ry

}
n∑

i=1

1{
Ûi < r, V̂i < r

} − c(x, y)

⎞
⎟⎟⎟⎟⎟⎠

D−→ N
(
0, σ2

x,y

)
(17)

for all x, y ∈ (0, 1], where
D−→ denotes convergence in distribution as n → ∞

and

σ2
x,y = c(x, y)(1 − c(x, y)).

	

3.2 Remarks.

(i) In Section 6, we actually prove the stronger result that the process√
m̃
(∑n

i=1 1{Ûi<rx,V̂i<ry}/
∑n

i=1 1{Ûi<r,V̂i<r} − c(x, y)
)

(x,y)∈[0,∞)2
converges

weakly in the bivariate Skorohod space D([0,∞)2) to a centered Gaus-
sian process.
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(ii) For arbitrary x, y > 0, (17) holds with

σ2
x,y = c(x, y) − 2c(x, y)c(x ∧ 1, y ∧ 1) + c2(x, y).

(iii) A similar result (with a more complicated asymptotic variance) holds in
the case of asymptotic dependence; see the accompanying technical note
Drees and Müller (2006).

	

To estimate c, we have to choose an appropriate r. We will now motivate such
a choice by a more detailed examination of the Hill estimator η̂n, introduced
in Section 3.1. In particular, this choice will prove useful when validating
the scaling law (11) with the method proposed in Section 4. Recall that the

Hill estimator η̂n is based on the m + 1 largest order statistics T
(n)
n−j+1:n, j =

1, . . . , m + 1, of the pseudo-observations T
(n)
i = 1/ max(Ûi, V̂i). This means

that we use those (Ûi, V̂i) for the estimation of η that lie within the square

(0, 1/T
(n)
n−m:n]2. Hence, from this point of view, it seems natural to work with

the random value r = 1/T
(n)
n−m:n and to define

ĉn(x, y) :=

n∑
i=1

1{
Ûi < x/T

(n)
n−m:n, V̂i < y/T

(n)
n−m:n

}
n∑

i=1

1{
Ûi < 1/T

(n)
n−m:n, V̂i < 1/T

(n)
n−m:n

} .

In the accompanying technical note Drees and Müller (2006) it is shown that

ĉn satisfies
√

m̃(ĉn(x, y) − c(x, y))
D→ N (0, σ2

x,y), which also holds when m̃ is
replaced with m; see the following comments on the relation of the particular
choice m̃ = nq(1/T

(n)
n−m:n) and m. In particular, ĉn(x, y) is consistent for c(x, y).

Remarks 3.2 apply analogously.

The similarity of the notations of the number of order statistics m used for the
estimation of η (Section 3.1) and m̃ is not by accident. By the aforementioned
random choice of r,

m̃ = nq(1/T
(n)
n−m:n) = nP {U < r, V < r}

∣∣∣
r=1/T

(n)
n−m:n

also becomes a random variable. If the claim sizes have no ties 1 , we have for

1 Under the assumption that F1 and F2 are tail continuous, the probability that
there are no ties converges to 1; see also the comments made in Section 6.
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the deterministic value m the simple equality

m =
n∑

i=1

1{
Ûi < 1/T

(n)
n−m:n, V̂i < 1/T

(n)
n−m:n

},

and thus

m̃

m
=

nP {U < r, V < r}
n∑

i=1

1{
Ûi < r, V̂i < r

}
∣∣∣∣∣∣∣∣∣∣∣∣
r=1/T

(n)
n−m:n

.

In the accompanying technical note Drees and Müller (2006) it is shown that
m̃/m → 1 in probability as n → ∞ and therefore

√
m(ĉn(x, y) − c(x, y))

D→ N
(
0, σ2

x,y

)
.

The choice r = 1/T
(n)
n−m:n will be important for the construction of the graphical

tool for model validation in Section 4 and will be used in the applications of
Section 5.

3.3 Probability of a Jointly Large Event

To motivate an estimator for the probability of a jointly large event like p =
P{X > u1, Y > u2}, recall the scaling law (11) to see that

p = P
{
U < 1 − F1(u1), V < 1 − F2(u2)

}
≈ r−1/η · P

{
U < r(1 − F1(u1)), V < r(1 − F2(u2))

}
(18)

for all r ∈ (0, 1]. This representation emphasizes that the Extended Ledford
& Tawn Model separates modeling the joint tail distribution of X and Y into
two parts describing the tails of the marginal d.f.s F1 and F2 and the tail
dependence structure (by η). In contrast to the most copula approaches (see
Section 1), however, the Extended Ledford & Tawn Model focusses on the
distribution tail(s) and therefore allows a separate modeling of large claims
with respect to the marginal distributions and the dependence structure. Also
in Section 1, we briefly discussed the generalized Pareto model in the univariate
EVT. Denote by F̂1,n and F̂2,n estimators of the tails of the marginal d.f.s F1

and F2 that are based on the GPD approximation (1). Then, continuing (18),

p ≈ r−1/η̂n · 1

n

n∑
i=1

1{
Ûi < r(1 − F̂1,n(u1)), V̂i < r(1 − F̂2,n(u2))

} =: p̂n
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motivates an estimator for p. In a forthcoming paper, we will establish con-
sistency and asymptotic normality of p̂n under additional weak assumptions
on the marginal d.f.s Fi and the thresholds ui, i = 1, 2. Using the asymptotic
normality of p̂n, one can easily construct confidence intervals for p. (Because
one has to distinguish several cases depending on the rates of convergence of
the marginal estimators F̂i,n(ui) and of η̂n, the exact statement of the asymp-
totic normality is somewhat lengthy. Its formulation clearly goes beyond the
scope of the present paper that is focussed on the fitting and validation of the
model, not on the estimation of tail probabilities.)

The concept of the construction of p̂n is readily extended to estimators for
the probability of more general jointly large events like P{(X, Y ) ∈ C} for
events C that satisfy 2 (x, y) ∈ C ⇒ [x,∞]× [y,∞] ⊂ C. The construction of
such an estimator for P{(X, Y ) ∈ C} can be found in Section 3 of Draisma
et al. (2004), where the following estimator p̃n is generalized to an estimator
for P{(X, Y ) ∈ C}.

Instead of the approximations Ûi and V̂i to Ui and Vi that are based on ranks,
one can use estimators Ũi := 1 − F̂1,n(Xi) and Ṽi := 1 − F̂2,n(Yi), which
are based on the GPD approximations of the marginal tails. The resulting
estimator of p is

p̃n := r−1/η̂n
1

n

n∑
i=1

1{
Ũi < r(1 − F̂1,n(u1)), Ṽi < r(1 − F̂2,n(u2))

}.

For the pertaining more general estimator of P{(X, Y ) ∈ C} with C as defined
above, consistency is proved in Section 3 of Draisma et al. (2004).

4 Model Validation

In this section we develop a method to validate the scaling law (11) for given
data. We prove that under some regularity conditions the random deviations
from this scaling law are asymptotically normal, construct pointwise confi-
dence intervals and suggest a method to validate the scaling law by means of
a simple three-dimensional plot.

Let us recall the scaling law (11), i.e. P{U < su, V < sv}/P{U < u, V < v} ≈
s1/η for all s ∈ (0, 1] and sufficiently small u, v > 0. Taking logarithms leads

2 This property is rather a technical condition than a serious restriction in real-
world applications. It merely means that we only allow events C, which possess the
property that if a claim (x, y) belongs to C then a claim with both components
larger must belong to C, too.
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to

log
P{U < su, V < sv}
P{U < u, V < v} ≈ 1

η
log s.

Now suppose that we choose s such that (Ûi, V̂i) exist with Ûi < su, V̂i < sv,
and estimate P{U < su, V < sv} by the empirical probability
n−1∑n

i=1 1{Ûi<su,V̂i<sv}. Then, in analogy to the concept of pp-plots, the points

⎛
⎜⎜⎜⎜⎝log s, log

n∑
i=1

1{Ûi < su, V̂i < sv}
n∑

i=1

1{Ûi < u, V̂i < v}

⎞
⎟⎟⎟⎟⎠ (19)

must approximately lie on the line through the origin with slope 1/η if the
scaling law (11) is satisfied. This should be true for arbitrary, sufficiently small
u, v > 0 and all s ∈ (0, 1].

In order to construct a test statistic to discriminate between presence and
absence of the scaling law using this basic fact, we must first replace the
unknown slope of the line with a suitable estimator, e.g. the reciprocal of the
Hill estimator (12). Next we must specify what “sufficiently small” precisely
means, i.e. in an asymptotic setting, we must specify the rate at which u and
v tend to 0. To this end, recall that the Hill estimator η̂n is based on the m+1
largest order statistics T

(n)
j = 1/ max(Ûj, V̂j) ≥ T

(n)
n−m:n, and thus on those

pseudo-observations (Ûj , V̂j) which fall into the square (0, 1/T
(n)
n−m:n]

2. It is a

reasonable estimator for η if and only if the points (19) with x = y ≤ 1/T
(n)
n−m:n

lie approximately on the line through the origin with slope 1/η. Therefore, it

is natural to consider values u = x/T
(n)
n−m:n and v = y/T

(n)
n−m:n that converge

with rate 1/T
(n)
n−m:n to 0.

Finally, to discriminate between random and systematic deviations of the point
(19) from the line, the size of the estimated deviation must be examined in
the case that the model assumptions are satisfied, i.e. the scaling law holds.
The following theorem establishes the asymptotic behavior of this estimated
deviation.

4.1 Theorem. Assume that (9) holds with asymptotically independent ran-
dom variables U and V and with a function c that has first order partial
derivatives cx and cy. Suppose (as in Theorem 3.1) that m is an intermediate
sequence such that

√
m q1(q

←(m/n)) → 0 as n → ∞. Then

13



√
m

⎛
⎜⎜⎜⎜⎝log

n∑
i=1

1{Ûi < sx/T
(n)
n−m:n, V̂i < sy/T

(n)
n−m:n}

n∑
i=1

1{Ûi < x/T
(n)
n−m:n, V̂i < y/T

(n)
n−m:n}

− 1

η̂n
log s

⎞
⎟⎟⎟⎟⎠

D−→ N
(
0, σ2

x,y,s

)

(20)

for all s, x, y ∈ (0, 1], where

σ2
x,y,s =

s−1/η − 1

c(x, y)
− log2 s

η2
.

	

4.2 Remarks.

(i) For arbitrary x, y > 0, (20) holds with

σ2
x,y,s =

s−1/η − 1

c(x, y)
+

log2 s

η2

+
2 log s

c(x, y)

(∫ s−1/η

1
t−1c(x ∧ tη, y ∧ tη)dt

−s−1/ηc(sx ∧ 1, sy ∧ 1) + c(x ∧ 1, y ∧ 1)

)
.

(ii) A similar result (with a more complicated asymptotic variance) holds in
the case of asymptotic dependence; see the accompanying technical note
Drees and Müller (2006).

(iii) Likewise one can establish analogous results if another estimator for η

based on a certain fraction of largest order statistics of T
(n)
i is used

instead of the Hill estimator.

	

In order to apply this result in a model check, one has to choose appropri-
ate values for u and v (or x and y) and for s. Here we propose to imitate
the approach of pp- and qq-plots in that we consider (19) only for points
(su, sv) equal to a (pseudo-)observation. More precisely, we consider those

points (sjuj, sjvj) = (Ûj, V̂j) which belong to the open square (0, 1/T
(n)
n−m:n)

2.
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Recall that (if no ties occur 3 ) these pseudo-observations correspond to the

order statistics T
(n)
n−i+1:n, i = 1, . . . , m, that are used for the estimation of η.

Here, for simplicity, we assume that the standardized observations (Ûj , V̂j)

have been re-indexed such that (Ûj , V̂j) ∈ (0, 1/T
(n)
n−m:n)

2 for j = 1, . . . , m.

Moreover, we take (uj, vj) to be the projection of (Ûj , V̂j) onto the (upper or

right) boundary of the square (0, 1/T
(n)
n−m:n]

2, which results in the choice

sj :=
max(Ûj, V̂j)

1/T
(n)
n−m:n

, (uj, vj) :=
(Ûj, V̂j)

sj

=
1

T
(n)
n−m:n

· (Ûj , V̂j)

max(Ûj, V̂j)
;

see Figure 2 below. This way, we ensure that sj is indeed a contraction factor
(i.e., less than 1) as it was assumed above, and that all reference points (uj, vj)
used in the graphical check of the scaling law can be parameterized by a single
real parameter

zj :=

⎧⎨
⎩uj ∈ (0, 1/T

(n)
n−m:n], if uj ≤ vj = 1/T

(n)
n−m:n

2/T
(n)
n−m:n − vj ∈ (T

(n)
n−m:n, 2/T

(n)
n−m:n] if vj < uj = 1/T

(n)
n−m:n.

(The parameter zj equals the distance between the points (0, 1/T
(n)
n−m:n) and

(uj, vj) measured along the boundary of the square (0, 1/T
(n)
n−m:n]

2.) Note that
if we plot (19) for all points (uj, vj) and contraction factors sj, j = 1, . . . , m,
we lose the information which point of the plot corresponds to which pseudo-
observation. To avoid that, we instead use the three-dimensional plot

⎛
⎜⎝zj , log sj , log

∑n
i=1 1{Ûi < sjuj, V̂i < sjvj}∑n

i=1 1{Ûi < uj, V̂i < vj}

⎞
⎟⎠

j=1,...,m

, (21)

where the additional argument zj determines the reference point (uj, vj). The
right hand plot of Figure 2 illustrates our construction. The points of the plot
(21) should then approximately lie on the reference plane (z, u) �→ (z, u, u/η) if
the scaling law holds. The following statistical tests formalize this requirement.

Let ∆j := log(
∑n

i=1 1{Ûi<sjuj ,V̂i<sjvj}/
∑n

i=1 1{Ûi<uj ,V̂i<vj}) − 1/η̂n log sj denote

the estimated difference between the third coordinate of the jth point of (21)
and the third coordinate of the corresponding point (with the same first and
second coordinates) on the reference plane. Then, according to Theorem 4.1,√

m∆j/σ̂j with σ̂2
j := (s

−1/η̂n

j − 1)/ĉ(uj, vj) − (log2 sj)/η̂
2
n is approximately

N (0, 1)-distributed. Hence, we reject the scaling law on the approximate con-

3 See footnote 1. If ties occur in applications, we simply exclude all (Ûi, V̂i) with
max(Ûi, V̂i) = 1/T (n)

n−m:n (and reduce the number of points (19) is plotted for).
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fidence level 1 − α, if

∣∣∣∣∣
√

m∆j

σ̂j

∣∣∣∣∣ > Φ←(1 − α/2) (22)

or, equivalently, if the last coordinate of the jth point of the plot (21) does not
belong to the confidence interval [log sj/η̂n −m−1/2σ̂jΦ

←(1−α/2), log sj/η̂n +
m−1/2σ̂j Φ←(1−α/2)]. To get an overall picture from all m tests, a percentage
of points whose last component does not belong to the pertaining confidence
interval much greater than α can be interpreted as an indicator that the scaling
law is not fulfilled in the square (0, 1/T

(n)
n−m:n]

2.

One can also incorporate the information provided by the statistical test into
the plot (21) by indicating for each point either (i) whether its last coordinate
belongs to the corresponding confidence interval or (ii) the (1 − p)-value

2

∣∣∣∣∣Φ
(√

m∆j

σ̂j

)
− 0.5

∣∣∣∣∣ (23)

of the pertaining test. Since only a very restricted variety of colors is available
here, the plots given in the following applications merely implement (i). 4

5 Applications

5.1 Danish Fire Insurance

Our first application deals with a well-known data set of Danish fire insurance
claims. These data have first been considered by Rytgaard (1996) and are
widely used in extreme value analysis. The data set contains losses to build-
ing(s) Xi, losses to contents Yi and losses to profits caused by the same fire.
We suppose, as an example, that we are interested in a bivariate analysis of Xi

and Yi. The claims are recorded only if the sum of all components attains at
least 1 million Danish Kroner (DKK). For the period 01/1980 - 12/1990 and
01/1980 - 12/1993, respectively, these data were used for a univariate extreme
value analysis e.g. by McNeil (1997) and Embrechts et al. (1997) (starting with
Example 6.2.9). For the latter period, Blum et al. (2002) investigate depen-
dencies between Yi and losses to profits by fitting various parametric copulas
to the data. As remarked by the authors, this is appropriate e.g. for stress
testing rather than for modeling multivariate extremes as realistic as possible.

4 Files where also plots with discretized (1−p)-values are implemented are available
for download at http://www.math.uni-hamburg.de/home/drees/extrdep/mdilc.html ;
see also Section 5.
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The extended data set we consider contains 6,870 recorded claims of the pe-
riod 01/1980 - 12/2002. Note that due to the recording method, there is an
artificial negative dependence between the components, since if one compo-
nent is smaller than 1 million DKK, the sum of the others must be accordingly
larger. We eliminate this artificial dependence by consulting a claim only if
both components Xi (Building) and Yi (Content) attain at least 1 million
DKK. Hence, in the sequel, we analyze the conditional distribution of (X, Y )
given {X ≥ 1, Y ≥ 1}, where here and below we refer to claims in millions of
DKK. The sample size of the remaining data is n = 588. We discounted the
claim sizes to 7/1985 prices according to the Danish Consumer Price Index
(DCPI) 5 on a monthly basis. Figure 2 displays the scatterplot of the data
and of the pseudo-observations (Ûi, V̂i).

To choose a suitable number of order statistics m used for the Hill estimator
η̂n, we consider a so-called Hill plot, which displays the estimates η̂n versus
m. A small value m results in a high variance of η̂n, while too large an m may
cause a large bias. A typical (nice) Hill plot exhibits heavy fluctuations for
small values of m (due to large variance), followed by a rather stable region
where both variance and bias are moderate, before the bias causes an almost
monotone decrease or increase of the curve. Thus, m ought to be chosen in
the region where the plot is rather stable. For a more extended discussion on
this matter see e.g. Sections 6.4 and 6.5 of Embrechts et al. (1997) or Drees
et al. (2000). For the present data set, the (heuristic) analysis of the Hill plot

(Figure 3) suggests m = 200, which yields 1/T
(n)
n−m:n = 0.53 (indicated in the

right hand plot of Figure 2) and η̂n = 0.76. The 95% confidence interval (15)
for η is [0.66, 0.87]. The pertaining test (16) clearly rejects the null hypothesis
η = 1 on a 95% confidence level with (1−p)-value > 0.9999, so that we assume
asymptotic independence.

Only 5 of the points (21), i.e. 2.5 %, lie outside their 95% confidence interval,
so that our method accepts the presence of the scaling law (11). The pertain-
ing plots (21) are shown in Figure 4, where gray points lie inside their confi-
dence interval, black points outside. A more detailed three-dimensional pre-
sentation including a discretized specification of the (1− p)-values (23) of the
respective test (22) for all j = 1, . . . , m is available at http://www.math.uni-
hamburg.de/home/drees/extrdep/mdilc.html (plot generating MatLab files and
an avi file with a rotating plot).

Table 1 compares estimates and 95% confidence intervals for the conditional
probability of the jointly large event P (X > u1, Y > u2 | X ≥ 1, Y ≥ 1).

5 http://www.dst.dk/Statistik/seneste/Indkomst/Priser/Forbrugerprisindeks.aspx
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Fig. 2. Scatterplot Xi vs. Yi and Ûi vs. V̂i. The square with side length
1/T (n)

n−m:n = 0.53 contains the m = 200 points used for the estimation of η. The
scaling law (11) is checked within this square.
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Fig. 3. Hill plot: η̂n as a function of m.

Denote by Ĝi,n(x), i = 1, 2 the estimates for the conditional marginal d.f.s
of X and Y given {X ≥ 1, Y ≥ 1}, respectively. For the applications in
this section we introduce a location parameter µ and a scale parameter ς by
replacing the argument x in (2) by (x−µ)/ς. See Section 6.5 of Embrechts et
al. (1997) for a discussion of how to estimate γ, µ and ς in such a location-
scale setting. We obtain 1 − Ĝ1,n(x) = (1 + 0.47(x − 0.96)/1.85)−2.14 and

1 − Ĝ2,n(y) = (1 + 0.52(y − 0.72)/2.45)−1.93. The confidence intervals for the
empirical probability p̂e := n−1∑n

i=1 1{Xi>u1,Yi>u2} are computed according to
Clopper and Pearson (1934), see also e.g. Santner and Duffy (1989), p. 35.
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Fig. 4. Plot (21) with m = 200, 1/T (n)
n−m:n = 0.53, η̂n = 0.76 from two perspectives.

The right hand perspective also displays the reference plane. Five (black) points lie
outside their 95% confidence interval.

Further, estimates p̂i := (1 − Ĝ1,n(u1))(1 − Ĝ2,n(u2)) assuming independence
of X and Y are given.

u1 u2 p̂n in % p̂e in % p̂i in %

5 5 12.48 [11.30,13.77] 12.59 [10.01,15.54] 6.38

10 10 3.49 [2.80,4.34] 3.40 [2.09,5.20] 0.96

20 20 0.75 [0.49,1.16] 0.34 [0.04,1.22] 0.10

25 25 0.44 [0.26,0.73] 0.17 [0.00,0.94] 0.046

100 10 0.018 [0.01,0.05] 0 [0,0.63] 0.012

Table 1. Comparison of the estimates p̂n, the empirical probability p̂e and the esti-
mated probability p̂i assuming independence of X and Y .

We observe that the empirical probability is close to the estimates obtained in
the Extended Ledford & Tawn Model if the event under consideration has been
observed sufficiently often. However, the confidence intervals calculated from
the empirical probabilities are typically considerably wider. (The latter fact
is demonstrated even more impressively in Table 2.) Of course, the empirical
probability is of very limited value if the event under consideration has not
occurred yet. As expected, the assumption of independence of X and Y yields
systematically smaller estimates than the empirical probability (if the latter
is positive) and those obtained in the Extended Ledford & Tawn Model.

19



5.2 Medical Claims

In our second application we analyze a data set given in the Society of Actuar-
ies Group Medical Insurance Large Claims Database 6 . The data set contains
annual hospital charges Xi and annual other charges Yi of a risk and refer
to the years 1991 and 1992. The claims are recorded only if the sum of both
components attains at least 25,000 US-Dollar (USD). For a detailed descrip-
tion of the project see Grazier and G’Sell Associates (1997). A summarized
description of the data and a univariate extreme value analysis of the total
charges (Xi + Yi) can be found in Cebriàn et al. (2003).

Here, we merely consider the data of the year 1991, for which 92,750 claims
with separate information about hospital and other charges are available. For
the same reason as with the Danish fire insurance claims we sort out those
claims with min(Xi, Yi) < 25, 000 USD. Hence, in the sequel, we analyze the
conditional distribution of (X, Y ) given {X ≥ 25, Y ≥ 25}, where here and
below we refer to claims in thousands of USD. The sample size of the remaining
data is n = 7675.

Figure 5 displays the scatterplot of the data and of the pseudo-observations
(Ûi, V̂i). The analysis of the Hill plot (Figure 6) leads to m = 1, 000, which

yields 1/T
(n)
n−m:n ≈ 0.34 (indicated in the right hand plot of Figure 5) and

η̂n ≈ 0.59. The 95% confidence interval (15) is [0.55, 0.62]. The pertaining
test (16) clearly rejects the hypothesis η = 1 on a 95% confidence level with
(1 − p)-value > 0.9999, so that we assume asymptotic independence.

We obtain that 49 of the points (21), i.e. 4.9 %, lie outside their 95% con-
fidence interval so that our method accepts the presence of the scaling law
(11). The pertaining plot (21) is shown in Figure 7, where gray points lie
inside their confidence interval, black points outside. A more detailed three-
dimensional presentation including a discretized specification of the (1 − p)-
values (23) of the respective test (22) for all j = 1, . . . , m is available at
http://www.math.uni-hamburg.de/home/drees/extrdep/mdilc.html (plot gen-
erating MatLab files and an avi file with the rotating plot).

Table 2 compares probability estimates and 95% confidence intervals for the
probability of the jointly large event P (X > u1, Y > u2 | X ≥ 25, Y ≥ 25).
Denote by Ĝi,n(x), i = 1, 2, the estimates for the conditional marginal d.f.s of
X and Y given {X ≥ 25, Y ≥ 25}, respectively. Then, for p̂n and p̂i we used
the univariate GPD fits 1 − Ĝ1,n(x) = (1 + 0.26(x − 22.95)/58.62)−3.80 and

6 http://www.soa.org/ccm/content/research-publications/experience-studies-
tools/1991-92-group-medical-insurance-large-claims-database/
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n−m:n = 0.34 contains the m = 1, 000 points used for the estimation of η.
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Fig. 6. Hill plot: η̂n as a function of m.

1 − Ĝ2,n(y) = (1 + 0.41(y + 2.59)/28.72)−2.45.

The observations made in Table 1 are confirmed. In fact, the results in Table
2 demonstrate even more impressively that the confidence intervals for p̂e can
be considerably wider than those for p̂n, i.e., the empirical estimates are less
accurate. Observe that in contrast to what we have seen for the fire insurance
data, in the present example, for large thresholds u1 and u2, the empirical
probabilities are larger than the estimates p̂n. Of course, for sufficiently large
thresholds, the empirical probabilities will be 0 and hence underestimate the
real risk, but in general this need not be true for extreme events which have
occurred in the past.
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n−m:n ≈ 0.34, η̂n ≈ 0.59 from two perspectives.

The right hand perspective also displays the reference plane. 49 (black) points lie
outside their 95% confidence interval.

u1 u2 p̂n in % p̂e in % p̂i in %

100 100 3.88 [3.81,3.95] 3.82 [3.40,4.27] 3.57

200 200 0.59 [0.53,0.64] 0.61 [0.45,0.81] 0.39

400 400 0.052 [0.04,0.07] 0.07 [0.02,0.15] 0.022

600 400 0.026 [0.02,0.03] 0.05 [0.01,0.13] 0.007

Table 2. Comparison of the estimates p̂n, the empirical probability p̂e and the esti-
mated probability p̂i assuming independence of X and Y .

For the purpose of comparison, Figure 8 displays the plot (21) for m = 3, 800,
that is, about half of all data points are used for the model fitting. (A more
sophisticated plot is provided by files on the aforementioned website.) Since
data is used which cannot be considered extreme, it seems quite likely that
the scaling law (11), that was motivated by asymptotic arguments for ex-
treme observations, does not hold on the much larger square with side length
1/T

(n)
n−m:n ≈ 0.70. Indeed, we observe that 1,729 points, about 46%, lie outside

their 95% confidence interval. Thus, in this case, our method clearly detects
the deviations from the scaling law. (Note that although also the hill plot for
η indicates that m = 3, 800 is too large, the resulting point estimate η̂n ≈ 0.55
belongs to the confidence interval for η obtained with the choice m = 1, 000,
i.e. the difference is not statistically significant.)

This example demonstrates that our method cannot only be used to decide
whether the Extended Ledford & Tawn Model is appropriate or not in some
tail region, but also, loosely speaking, to determine the maximum tail region
for which the application of the Extended Ledford & Tawn Model is still
reasonable.
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Fig. 8. Plot (21) with m = 3, 800, 1/T (n)
n−m:n = 0.70, η̂n = 0.55 from two perspectives.

The right hand perspective also displays the reference plane. 1,729 (black) points
lie outside their 95% confidence interval.

We conclude this section with the general warning that it is an inherent prob-
lem of tail modeling that the estimation accuracy decreases when we extrapo-
late farther into the tail, i.e. if the thresholds u1 and u2 increase. Small errors
in the estimation of η then have greater impact on estimates of the probabil-
ity of more extreme events (imaginable as a leverage effect on the reference
plane), particularly if u1 and u2 lie outside the range of the data.

6 Proofs

Proof of Theorem 3.1. For a ∈ R we denote by �a� the largest integer less
than or equal to a and by �a� the smallest integer greater than or equal to
a. Furthermore, let Xi:n, Yi:n, Ui:n and Vi:n, i = 1, . . . , n, denote the order
statistics pertaining to Xi, Yi, Ui and Vi, i = 1, . . . , n, with the conventions
X0:n := Y0:n := U0:n := V0:n := 0 and Xj:n := Yj:n := Uj:n := Vj:n := 1
for j > n. The first aim is to apply Lemma 6.1 of Draisma et al. (2004) to∑n

i=1 1{Ûi<rx,V̂i<ry} and
∑n

i=1 1{Ûi<r,V̂i<r}.

Recall that Fi is assumed continuous on [ξi,∞) for some ξi < F←i (1), i =
1, 2. If Xn−k:n ≥ ξ1, then Xn−k:n < Xn−k+1:n < . . . < Xn:n almost surely
(a.s.). Since r → 0, and thus X�n−(n+1)rx0+1�:n → F←1 (1), it follows that the
probability that there are no ties between these order statistics tends to 1,
i.e. P{X�n−(n+1)rx0+1�:n < X�n−(n+1)rx0+1�+1:n < . . . < Xn:n} → 1 as n → ∞
for all x0 > 0. Furthermore, if there are no ties, then the condition Ûi <
rx is equivalent to RX

i > n − (n + 1)rx + 1 which in turn is equivalent to
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Xi > X�n−(n+1)rx+1�:n and to Ui < U	(n+1)rx
:n. Hence, together with analogous
arguments for Vi and Yi and the definition S(x, y) :=

∑n
i=1 1{Ui≤x,Vi≤y} we see

that
∑n

i=1 1{Ûi<rx,V̂i<ry}/
∑n

i=1 1{Ûi<r,V̂i<r} equals

c̃n(x, y) :=
S(U	(n+1)rx
−1:n, V	(n+1)ry
−1:n)

S(U	(n+1)r
−1:n, V	(n+1)r
−1:n)

for all x, y ∈ (0, x0] with probability tending to 1 as n → ∞ for all x0 > 0.
It is therefore sufficient to prove the assertion of Theorem 3.1 for c̃n, i.e.√

m̃(c̃(x, y) − c(x, y))
D→ N (0, σ2

x,y) for all x, y ∈ (0, 1].

Let W be a Gaussian process with mean zero and covariance structure given
by

E [W (x1, y1), W (x2, y2)] = c(x1 ∧ x2, y1 ∧ y2). (24)

Lemma 6.1 of Draisma et al. (2004) states that under the conditions of The-
orem 3.1,

√
m̃

(
S(U�nrx�:n, V�nry�:n)

m̃
− c(x, y)

)
(x,y)∈[0,∞)2

−→ (W (x, y))(x,y)∈[0,∞)2. (25)

weakly in the bivariate Skorohod space D([0,∞)2). Since W possesses a.s. con-
tinuous sample paths (cf. the proof of Lemma 6.2 of Draisma et al. (2004)), this
convergence holds uniformly on compact subsets of [0,∞)2. Further, accord-
ing to the Skorohod-Dudley-Wichura representation theorem (see e.g. Shorack
and Wellner (1986), p. 47), this convergence holds a.s. for suitable versions of
the process (S(U�nrx�:n, V�nry�:n))(x,y)∈[0,∞)2 and W . Hence, for these versions

c̃n(x, y)=
c(x, y) + m̃−1/2W (x, y) + o(m̃−1/2)

c(1, 1) + m̃−1/2W (1, 1) + o(m̃−1/2)

=
(
c(x, y) + m̃−1/2W (x, y) + o(m̃−1/2)

)
(
1 − m̃−1/2W (1, 1) + o(m̃−1/2)

)
a.s.,

i.e.

√
m̃(c̃n(x, y) − c(x, y)) → W (x, y) − c(x, y)W (1, 1) a.s.

uniformly on compact subsets of [0,∞)2. The covariance structure (24) of W
yields

var (W (x, y) − c(x, y)W (1, 1))=E
[
(W (x, y) − c(x, y)W (1, 1))2

]
= c(x, y) − 2c(x, y)c(x ∧ 1, y ∧ 1) + c2(x, y),
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see also Remark 3.2 (ii). The assumption x, y ∈ (0, 1] yields the assertion. �

Proof of Theorem 4.1. First, we argue as in the proof of Theorem 3.1 to see
that

log

n∑
i=1

1{Ûi < sx/T
(n)
n−m:n, V̂i < sy/T

(n)
n−m:n}

n∑
i=1

1{Ûi < x/T
(n)
n−m:n, V̂i < y/T

(n)
n−m:n}

(26)

= log
S
(
U	sx(n+1)/T

(n)
n−m:n
−1:n

, V	sy(n+1)/T
(n)
n−m:n
−1:n

)

S
(
U	x(n+1)/T

(n)
n−m:n
−1:n

, V	y(n+1)/T
(n)
n−m:n
−1:n

)

for all x, y ∈ (0, x0] with probability tending to 1 as n → ∞ for all x0 > 0.
As in (25), according to the Skorohod-Dudley-Wichura representation the-
orem, there is a process (S∗n(x, y))(x,y)∈[0,∞)2 with the same distribution as
(S(U�nrx�:n, V�nry�:n))(x,y)∈[0,∞)2 , where r = q←(m/n), and a Brownian motion
W such that

√
m

(
S∗n(x, y)

m
− c(x, y)

)
(x,y)∈[0,∞)2

−→ (W (x, y))(x,y)∈[0,∞)2 (27)

holds a.s. uniformly on compact subsets of [0,∞)2. Let S̄∗n(x) := S∗n(x, x).
Because of

T
(n)
n−k:n = inf

{
x ∈ (0,∞) | S(U�(n+1)/x�:n, V�(n+1)/x�:n) ≤ k

}
, k = 0, . . . , n − 1,

the process

Q∗n(t) := inf
{
x ∈ (0,∞) | S̄∗n((n + 1)/(nrx)) ≤ �mt�

}
, t ∈ [0, 1],

possesses the same distribution as the tail empirical quantile process Qn =
(T

(n)
n−�mt�:n)t∈[0,1]. Thus,

(
S∗n

(
(n + 1)sx

nrQ∗n(1)
−,

(n + 1)sy

nrQ∗n(1)
−
))

(x,y)∈(0,∞)2

is a version of the process given in the numerator of the right hand side of
(26), where f(x−) denotes the left-hand limit of f at x.

Next note that

(Q∗n)←(x) := inf{t ∈ [0, 1] | Q∗n(t) ≤ x} =
1

m
S̄∗n

(
n + 1

nrx

)
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and thus by (27)

√
m
(
(Q∗n)←(1/(rx)) − x1/η

)
x∈(0,∞)

→ (W (x, x))x∈(0,∞) a.s.

Now one can proceed as in the proof of Lemma 6.2 of Draisma et al. (2004)
to conclude

rQ∗n(t) = t−η + m−1/2ηt−(η+1)W (tη, tη) + o(m−1/2) a.s.

uniformly for t belonging to some compact interval bounded away from 0. Since
1/(1+z) = 1−z+o(z) as z → 0, this yields 1/(rQ∗n(1)) = 1−m−1/2ηW (1, 1)+
o(m−1/2) a.s. for t = 1. Further, consider (c(tx+tε, ty)−c(tx, ty))/(tε) as ε ↓ 0
to see that cx and cy are homogeneous of order 1/η − 1. Hence, by (27) with
x replaced with x(1 − m−1/2ηW (1, 1) + o(m−1/2)), and the homogeneity of c
and of cx and cy

m−1S∗n

(
(n + 1)sx

nrQ∗n(1)
−,

(n + 1)sy

nrQ∗n(1)
−
)

= c
(
sx(1−m−1/2ηW (1, 1)+o(m−1/2)), sy(1−m−1/2ηW (1, 1)+o(m−1/2))

)
+m−1/2W (sx, sy) + o(m−1/2)

= c(sx, sy) − m−1/2ηW (1, 1)sxcx(sx, sy) − m−1/2ηW (1, 1)sycy(sx, sy)

+m−1/2W (sx, sy) + o(m−1/2)

= s1/ηc(x, y)

[
1 − m−1/2ηW (1, 1)x

cx(x, y)

c(x, y)
− m−1/2ηW (1, 1)y

cy(x, y)

c(x, y)

+m−1/2 W (sx, sy)

c(sx, sy)
+ o(m−1/2)

]
a.s.

Further, we use 1/(1 − z) = 1 + z + o(z) as z → 0 once more to see that

m/S∗n

(
(n + 1)x

nrQ∗n(1)
−,

(n + 1)y

nrQ∗n(1)
−
)

=
1

c(x, y)

[
1 + m−1/2ηW (1, 1)x

cx(x, y)

c(x, y)
+ m−1/2ηW (1, 1)y

cy(x, y)

c(x, y)

−m−1/2 W (x, y)

c(x, y)
+ o(m−1/2)

]
a.s.

With log(1 + z) = z + o(z) as z → 0 it follows
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log
S∗n
(

(n+1)sx
nrQ∗

n(1)
−, (n+1)sy

nrQ∗
n(1)

−
)

S∗n
(

(n+1)x
nrQ∗

n(1)
−, (n+1)y

nrQ∗
n(1)

−
)

(28)

=
1

η
log s + m−1/2

(
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)

)
+ o(m−1/2) a.s.

To continue the proof of Theorem 4.1, we need an asymptotic representation
of the corresponding version 1/η̂∗n.

6.1 Lemma. For above processes S∗n and W and the corresponding version
η̂∗n := m−1∑m

i=1 log(Q∗n((i − 1)/m)/Q∗n(1)) of η̂n,

η̂∗n = η
(
1 + m−1/2

(∫ 1

0
t−1W (tη, tη)dt + W (1, 1)

))
+ oP (m−1/2). (29)

Proof. The proof is based on results of Drees (1998), Example 3.1, p. 103.
We may write

η̂∗n =
∫ 1

0
log

Q∗n(t)

Q∗n(1)
dt

and define functions yn : (0, 1] → R by

yn(t) :=
√

m
(
rQ∗n(t) − t−η

)
.

Further, let the function y : (0, 1] → R be defined by

y(t) := ηt−(η+1)W (tη, tη).

Hence,

η̂∗n − η =
∫ 1

0
log

t−η + m−1/2yn(t)

1 + m−1/2yn(1)
dt − η

=
∫ 1

0
log tη

t−η + m−1/2yn(t)

1 + m−1/2yn(1)
dt

=
∫ 1

0
log

(
1 + m−1/2 tηyn(t) − yn(1)

1 + m−1/2yn(1)

)
dt.

Exactly as in Drees (1998), Example 3.1, p. 103, where Q∗n(t), η and m−1/2

play the roles of z(t), β and λn, we conclude that
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η̂∗n − η =
∫ 1

0
m−1/2 tηyn(t) − yn(1)

1 + m−1/2yn(1)
dt + o(m−1/2).

According to (the proof of) Lemma 6.2 of Draisma et al. (2004),

sup
0<t≤1

tη−1/2+ε|yn(t) − y(t)| P−→ 0, (30)

for all ε > 0, where
P−→ denotes convergence in probability as n → ∞. Thus,

η̂∗n − η =
m−1/2

1 + m−1/2yn(1)

∫ 1

0
(tηyn(t) − yn(1))dt + o(m−1/2)

= m−1/2
∫ 1

0
(tηy(t) − y(1))dt + oP (m−1/2)

�

6.2 Corollary.

1

η̂∗n
=

1

η
− m−1/2

η

(∫ 1

0
t−1W (tη, tη)dt + W (1, 1)

)
+ oP (m−1/2). (31)

Proof. The Taylor expansion of the reciprocal of (29) gives

1

η̂∗n
=

1

η

(
1 − m−1/2

(∫ 1

0
t−1W (tη, tη)dt + W (1, 1)

))
+ oP (m−1/2).

�

By (28) and Corollary 6.2, we obtain

log
S∗n
(

(n+1)sx
nrQ∗

n(1)
−, (n+1)sy

nrQ∗
n(1)

−
)

S∗n
(

(n+1)x
nrQ∗

n(1)
−, (n+1)y

nrQ∗
n(1)

−
) − 1

η̂∗n
log s

=m−1/2

[
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)
+

log s

η

(∫ 1

0
t−1W (tη, tη)dt + W (1, 1)

)]

+oP (m−1/2).

Define Z(t) := η−1(log s) (t−1W (tη, tη) − W (1, 1)) + W (sx, sy)/c(sx, sy) −
W (x, y)/c(x, y), so that it remains to show that

∫ 1
0 Z(t)dt ∼ N (0, σ2

x,y,s).

28



A special case of Proposition 2.2.1 of Shorack and Wellner (1986) states that∫ 1
0 Z(t)dt ∼ N (0, σ2∫

Z
), with σ2∫

Z
=
∫ 1
0

∫ 1
0 cov(Z(r), Z(t))drdt. By (24) we obtain

cov(Z(r), Z(t)) = E(Z(r)Z(t))

=
log2 s

η2

[
(rt)−1c(rη ∧ tη, rη ∧ tη)

−r−1c(rη ∧ 1, rη ∧ 1) − t−1c(tη ∧ 1, tη ∧ 1) + 1
]

+
log s

ηc(x, y)

[
r−1

(
s−1/ηc(sx ∧ rη, sy ∧ rη) − c(x ∧ rη, y ∧ rη)

)

−2s−1/ηc(sx ∧ 1, sy ∧ 1) + 2c(x ∧ 1, y ∧ 1)

+t−1
(
s−1/ηc(sx ∧ tη, sy ∧ tη) − c(x ∧ tη, y ∧ tη)

) ]

+
s−1/η − 1

c(x, y)
.

Straightforward calculations lead to

σ2∫
Z

=
log2 s

η2
+

s−1/η − 1

c(x, y)
+

2 log s

ηc(x, y)

( ∫ s−1/η

1
t−1c(x ∧ tη, y ∧ tη)dt

−s−1/ηc(sx ∧ 1, sy ∧ 1) + c(x ∧ 1, y ∧ 1)

)
,

see also Remark 4.2 (i). Hence, the assumption x, y ∈ (0, 1] together with the
homogeneity (10) of c yields the required result. �

Although the proof of the case of asymptotic dependent variables U and V
requires significantly messier calculations, the proceeding is analogous. The
additional effort is mainly due to the substantially more complicated (covari-
ance) structure of the process W . The proof is provided in the accompanying
technical note Drees and Müller (2006).
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